Answer:
Time needed: 2.5 s
Distance covered: 31.3 m
Explanation:
I'll start with the distance covered while decelerating. Since you know that the initial speed of the car is 15.0 m/s, and that its final speed must by 10.0 m/s, you can use the known acceleration to determine the distance covered by
v2f=v2i−2⋅a⋅d
Isolate d on one side of the equation and solve by plugging your values
d=v2i−v2f2a
d=(15.02−10.02)m2s−22⋅2.0ms−2
d=31.3 m
To get the time needed to reach this speed, i.e. 10.0 m/s, you can use the following equation
vf=vi−a⋅t, which will get you
t=vi−vfa
t=(15.0−10.0)ms2.0ms2=2.5 s
Unscrambling
1. resting heart rate
2. overload
3. workout
4. specificity
5. cool-down
6. progression
7. warm-up
8. the last one can only be instance, but there was a typo on the paper.
Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m