1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ludmilka [50]
3 years ago
6

Two protons are released from rest when they are 0.720 nm apart. For related problem-solving tips and strategies, you may want t

o view a Video Tutor Solution of Potential of two point charges. Part A What is the maximum speed they will reach
Physics
1 answer:
Gnesinka [82]3 years ago
5 0

Answer:

a) Speed of the electrons at maximum speed = (1.384 × 10⁴) m/s

The maximum speed occurs at the point where all of the initial potential energy is converted into kinetic energy.

b) Maximum acceleration of the protons = (2.660 × 10¹⁷) m/s²

The maximum acceleration occurs at the minimum distance apart for the two protons.

Explanation:

The maximum speed occurs when all the potential energy of the protons has been converted to kinetic energy.

The potential energy between the two protons at the instant of release is given by

U = (kq₁q₂/r)

k = Coulomb' s constant = (8.988 × 10⁹) Nm²/C²

q₁ = q₂ = charge on a proton = q = (1.602 × 10⁻¹⁹) C

r = separation between the two protons = 0.72 nm = (7.2 × 10⁻¹⁰) m

U = (kq²/r) = [(8.988 × 10⁹) × (1.602 × 10⁻¹⁹)²] ÷ (7.2 × 10⁻¹⁰) = (3.204 × 10⁻¹⁹) N/m or Joules

At the maximum speeds, the two protons will not possess any potential Energy, only kinetic energy.

The sum of kinetic and potential energies is always constant for the system

(Initial Kinetic Energy) + (Initial Potential Energy) = (Kinetic Energy at maximum speed) + (Potential Energy at maximum speed)

Initial Kinetic Energy of the system = 0 J (Since both protons were intially at rest)

Initial Potential Energy = (3.204 × 10⁻¹⁹) J

Kinetic Energy at maximum speed = Sum of the kinetic energies of the protons at this point = (½mv²) + (½mv²) = (mv²) J (Since theu are both protons, they have the same mass and the same speed at maximum speed)

Potential Energy at maximum speed = 0 J

0 + (3.204 × 10⁻¹⁹) = mv² + 0

mv² = (3.204 × 10⁻¹⁹)

m = mass of a proton = (1.673 × 10⁻²⁷) kg

v = speed of each of the protons at maximum speed = ?

v = √[(3.204 × 10⁻¹⁹) ÷ m]

v = √[(3.204 × 10⁻¹⁹) ÷ (1.673 × 10⁻²⁷)]

v = √(1.915 × 10⁸) = 13,838.8 m/s = (1.384 × 10⁴) m/s

b) Since the two protons repel each other and force of repulsion reduces as the dI stance between the protons increases, the maximum acceleration occurs at the minimum distance apart for the two protons.

Force of repulsion acting on each proton is given through Coulomb's law as

F = (kq₁q₂/r²)

And the force acting on each proton is obtainable using Newton's law that

F = ma

So, the acceleration of each proton at any time is obtainable through a relation of these 2 formulas.

ma = (kq₁q₂/r²)

a = (kq₁q₂/r²m)

k = Coulomb' s constant = (8.988 × 10⁹) Nm²/C²

q₁ = q₂ = charge on a proton = q = (1.602 × 10⁻¹⁹) C

r = separation between the two protons = 0.72 nm = (7.2 × 10⁻¹⁰) m

m = mass of a proton = (1.673 × 10⁻²⁷) kg

a = [(8.988 × 10⁹) × (1.602 × 10⁻¹⁹)²] ÷ [(7.2 × 10⁻¹⁰)² × (1.673 × 10⁻²⁷)]

a = (2.660 × 10¹⁷) m/s²

Hope this Helps!!!

You might be interested in
A strong lightning bolt transfers an electric charge of about 16 C to Earth (or vice versa). How many electrons are transferred?
zzz [600]

Answer:

Number of electrons, n=9.98\times 10^{19}

Explanation:

A strong lightning bolt transfers an electric charge of about 16 C to Earth, q = 16 C

We need to find the number of electrons that transferred. Let there are n electrons transferred. It is given by using quantization of electric charge as :

q = ne

n=\dfrac{q}{e}

e is elemental charge

n=\dfrac{16}{1.602\times 10^{-19}}

n=9.98\times 10^{19}

So, there are 9.98\times 10^{19} electrons that gets transferred. Hence, this is the required solution.

3 0
3 years ago
What is the velocity of a beam of electrons that goes undeflected when passing through perpendicular electric and magnetic field
goldenfox [79]
F = qE + qV × B
where force F, electric field E, velocity V, and magnetic field B are vectors and the × operator is the vector cross product. If the electron remains undeflected, then F = 0 and E = -V × B
which means that |V| = |E| / |B| and the vectors must have the proper geometrical relationship. I therefore get
|V| = 8.8e3 / 3.7e-3
= 2.4e6 m/sec
Acceleration a = V²/r, where r is the radius of curvature.
a = F/m, where m is the mass of an electron,
so qVB/m = V²/r.
Solving for r yields
r = mV/qB
= 9.11e-31 kg * 2.37e6 m/sec / (1.60e-19 coul * 3.7e-3 T)
= 3.65e-3 m
6 0
3 years ago
Two trains are blowing their whistles. The first train is stationary, and the
Liono4ka [1.6K]

Answer:

A I think

Pls Mark Brainiest, I'm trying to become Virtuoso

3 0
3 years ago
What is the IMA of the following pulley system?<br><br>34567
Lynna [10]

Answer:

    IMA of given system =   \frac{F_{r} }{F_{e} }

Explanation:

  • The "Ideal Mechanical advantage" (IMA) of given pulley is \frac{F_{r} }{F_{e} } .
  • Ideal Mechanical advantage of a system is defined by the ratio of achieved or output force to the implied force. In the pulley system above, output force is the resistant force denoted by F_{r}. The input force is analogous or equivalent to the effort applied i.e. F_{e} .
  • Hence by dividing these two forces we calculate the IMA of the above mentioned pulley system which is  \frac{F_{r} }{F_{e} } .
  • Its mathematical reference would be:

                                                IMA =   \frac{F_{r} }{F_{e} }

6 0
3 years ago
When aluminum foil is formed into a loose ball, it can float on water. But when the ball of foil is pounded flat with a hammer,
docker41 [41]
Air caught in the ball of foil makes the ball less dense than water
8 0
3 years ago
Other questions:
  • A street light is at the top of a 10 ft tall pole. A woman 6 ft tall walks away from the pole with a speed of 8 ft/sec along a s
    7·1 answer
  • A sample of Bismuth-212 has a mass of 2.64 grams (g) after 121 seconds (s). What was the initial mass of the sample if Bismuth-2
    11·1 answer
  • A baseball player throws a baseball with a velocity of 13 m/s North it is caught by a second player seven seconds later how far
    15·1 answer
  • Hybrid plants usually have increased Vigar true or false
    5·1 answer
  • 2a. A wave has a frequency of 50 Hz and a wavelength of 0.10 m. How do you find the wave speed? *
    6·1 answer
  • A student new to the study of hearing wanted to determine the ability of listeners to determine the difference in the duration o
    13·1 answer
  • room-darkening window shades are used to keep sunlight out of a theater. what type of material should the shades be made of? Exp
    6·2 answers
  • The formula length x width x height is used to calculate the volume of a type of
    12·1 answer
  • When you do glass blowing is it a chemical change or a physical change
    9·1 answer
  • Two particles of a gas collide. Why is this considered an elastic collision? (1 point)
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!