Hey there!
Biotic factors are living organisms. This includes plants, animals, and bacteria. Climate, water, and natural disasters are abiotic factors, which means they are nonliving factors that affect the environment. Disease is caused by bacteria, which is a biotic factor.
Therefore, your answer is B) Disease.
Hope this helps!
Answer:
3.38 m/s
Explanation:
Mass of child = m₁ = 25
Initial speed of child = u₁ = 5 m/s
Initial speed of cart = u₂ = 0 m/s
Mass of cart = m₂ = 12 kg
Velocity of cart with child on top = v
This is a case of perfectly inelastic collision

Velocity of cart with child on top is 3.38 m/s
Answer:
The answer is
<h2>28 kg</h2>
Explanation:
The mass of an object given it's momentum and velocity / speed can be found by using the formula

where
m is the mass
p is the momentum
v is the speed or velocity
From the question
p = 280 kg/ms
v = 10 m/s
The mass of the object is

We have the final answer as
<h3>28 kg</h3>
Hope this helps you
Answer:
V' = 0.84 m/s
Explanation:
given,
Linear speed of the ball, v = 2.85 m/s
rise of the ball, h = 0.53 m
Linear speed of the ball, v' = ?
rotation kinetic energy of the ball

I of the moment of inertia of the sphere

v = R ω
using conservation of energy


Applying conservation of energy
Initial Linear KE + Initial roational KE = Final Linear KE + Final roational KE + Potential energy



V'² = 0.7025
V' = 0.84 m/s
the linear speed of the ball at the top of ramp is equal to 0.84 m/s