Answer: The given statement is true.
Explanation:
When we increase the amount of solvent which is water in this case then it means there will occur an increase in the molecules. Hence, there will be more number of collisions to take place with increase in number of molecules.
Therefore, more is the amount of interaction taking place between the molecules of a solution more will be its rate of hydrolysis.
Thus, we can conclude that the statement increasing the amount of water in which the sugar is dissolved will increase the frequency of collisions between the sucrose molecules and the water molecules resulting in an increase in the rate of hydrolysis, is true.
Answer:
5.37 × 10⁻⁴ mol/L
Explanation:
<em>A chemist makes 660. mL of magnesium fluoride working solution by adding distilled water to 230. mL of a 0.00154 mol/L stock solution of magnesium fluoride in water. Calculate the concentration of the chemist's working solution. Round your answer to 3 significant digits.</em>
Step 1: Given data
- Initial concentration (C₁): 0.00154 mol/L
- Initial volume (V₁): 230. mL
- Final concentration (C₂): ?
- Final volume (V₂): 660. mL
Step 2: Calculate the concentration of the final solution
We want to prepare a dilute solution from a concentrated one. We can calculate the concentration of the final solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁ / V₂
C₂ = 0.00154 mol/L × 230. mL / 660. mL = 5.37 × 10⁻⁴ mol/L
Answer:
The strength of an acid or alkali depends on the degree of dissociation of the acid or alkali in water. The degree of dissociation measures the percentage of acid molecules that ionise when dissolved in water. He could use universal indicators or litmus paper for this.
Explanation:
(See answer for the explanation)