Answer:
4,5-Dimethylhex-2-ene is the least substituted alkene, so it is the least stable and gives the highest heat of hydrogenation.
Explanation:
brainiest plz
Answer:
I think the best answer is (5) because catalyst are known to speed up a reaction without being changed
Gassed condense because molecules decrease inside
Answer:
S = 0.788 g/L
Explanation:
The solubility product (Kps) is an equilibrium solubization constant, which can be calculated by the equation:
![Kps = \frac{[product]^x}{[reagent]^y}](https://tex.z-dn.net/?f=Kps%20%3D%20%5Cfrac%7B%5Bproduct%5D%5Ex%7D%7B%5Breagent%5D%5Ey%7D)
Where x and y are the stoichiometric coefficients of the product and the reagent, respectively. Because of the aggregation form, the concentration of solids is always equal to 1 for use in this equation.
Analyzing the equation, we see that for 1 mol of
is necessary 2 mols of
, so if we call "x" the molar concentration of
, for
we will have 2x, so:
![Kps = [Fe^{+2}].[F^-]^2\\\\2.36x10^{-6} = x(2x)^2\\\\2.36x10^{-6} = 4x^3\\\\x^3 = 5.9x10^{-7}\\\\x = \sqrt[3]{5.9x10^{-7}} \\\\x = 8.4x10^{-3} mol/L](https://tex.z-dn.net/?f=Kps%20%3D%20%5BFe%5E%7B%2B2%7D%5D.%5BF%5E-%5D%5E2%5C%5C%5C%5C2.36x10%5E%7B-6%7D%20%3D%20x%282x%29%5E2%5C%5C%5C%5C2.36x10%5E%7B-6%7D%20%3D%204x%5E3%5C%5C%5C%5Cx%5E3%20%3D%205.9x10%5E%7B-7%7D%5C%5C%5C%5Cx%20%3D%20%5Csqrt%5B3%5D%7B5.9x10%5E%7B-7%7D%7D%20%5C%5C%5C%5Cx%20%3D%208.4x10%5E%7B-3%7D%20mol%2FL)
So, to calculate the solubility (S) of FeF2, which is in g/L, we multiply this concentration by the molar mass of FeF2, which is:
Fe = 55.8 g/mol
F = 19 g/mol
FeF2 = Fe + 2xF = 55.8 + 2x19 = 93.8 g/mol
So,
[tex]S = 8.4x10^{-3}x93.8
S = 0.788 g/L
Answer is: <span>a hill over which a wagon is pushed.
</span>For all chemical
reaction some energy is required and that energy is called activation
energy (<span>energy
that needs to be absorbed for a chemical reaction to start)<span>.
There are two types of reaction: endothermic
reaction (chemical reaction that absorbs more energy than it releases)
and exothermic reaction (chemical reaction that releases more energy than
it absorbs).
</span></span>R<span>eactions
occur faster with a catalyst because they require less activation energy.</span>