<span>The function of a hypothesis is to create a testable statement. In that, a hypothesis can be followed up by a experiment. Hypotheses can be used in order to determine if there is a result of an affect, this is the independent variable, what you get out is the dependent variable, or the result. There is a control that is used generally as a means to test your hypothesis to a standard.</span>
Explanation:
A single-replacement reaction replaces one element for another in a compound.
A double-replacement reaction exchanges the cations (or the anions) of two ionic compounds.
A precipitation reaction is a double-replacement reaction in which one product is a solid precipitate.
Solubility rules are used to predict whether some double-replacement reactions will occur.
Answer:
A. Soaps react with ions in hard water to create a precipitate.
B. Soaps are both hydrophobic and hydrophilic.
D. Soaps should be weakly alkaline in solution.
Explanation:
A. Hard water contains <u>magnesium and calcium minerals</u> like calcium and magnesium carbonates, sulfates and bicarbonates. As soon as these minerals come in contact with soap their ions like Mg²⁺ & Ca²⁺ form precipitates.
B. Soap are both hydrophilic and hydrophobic. They reason why they exhibit both the properties is really important for their functionality. The hydrophobic part of soap makes interaction with oil/dust particles while the hydrophilic part makes interaction with water. When the cloth is rinsed the dirt/soap particles are removed from the dirty clothes thereby making them clean.
C. Soaps have alkaline pH i.e. more than 7 that is why they have bitter taste.
Correct Answer: Option C
Reason:
<span>The </span>Pauli Exclusion Principle<span> states as '<em>in an atom or molecule, no two electrons can have the same four electronic quantum numbers. Further, an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.</em>'
</span>
Thus, it can be seen that in option C, electrons in last 2 subshell have electrons with same spin, which is a violation of Pauli Exclusion Principle .