0,26mol ------- 13g
1mol ------- x
x = (13g*1mol) / 0,26mol = 50g
It could be Ti or V
Answer: 41.5 mL
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in L
Given : 59.4 g of
in 100 g of solution
moles of 
Volume of solution =
Now put all the given values in the formula of molality, we get

To calculate the volume of acid, we use the equation given by neutralisation reaction:

where,
are the molarity and volume of stock acid which is 
are the molarity and volume of dilute acid which is 
We are given:

Putting values in above equation, we get:

Thus 41.5 mL of the solution would be required to prepare 1550 mL of a .30M solution of the acid
In buffer solution there is an equilibrium between the acid HA and its conjugate base A⁻: HA(aq) ⇌ H⁺(aq) + A⁻(aq).
When acid (H⁺ ions) is added to the buffer solution, the equilibrium is shifted to the left, because conjugate base (A⁻) reacts with hydrogen cations from added acid, according to Le Chatelier's principle: H⁺(aq) + A⁻(aq) ⇄ HA(aq). So, the conjugate base (A⁻) consumes some hydrogen cations and pH is not decreasing (less H⁺ ions, higher pH of solution).
A buffer can be defined as a substance that prevents the pH of a solution from changing by either releasing or absorbing H⁺ in a solution.
Buffer is a solution that can resist pH change upon the addition of an acidic or basic components and it is able to neutralize small amounts of added acid or base, pH of the solution is relatively stable
Answer:
Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles. The difference in mass between the reactants and products is manifested as either the release or the absorption of energy.
Explanation: Read this and you might be able to figure it out for yourself ☺️☺️☺️