There are 8.16 × 10-³ moles of CO2 gas at 100°C with a volume of 250 mL at 760 mm Hg.
HOW TO CALCULATE NUMBER OF MOLES:
The number of moles of a sample of gas can be calculated using the following formula:
PV = nRT
Where;
- P = pressure of gas (atm)
- V = volume (L)
- n = number of moles (mol)
- R = gas law constant (0.0821 Latm/molK)
- T = temperature (K)
According to this question;
- P = 760mmHg = 1 atm
- T = 100°C = 100 + 273 = 373K
- V = 250mL = 0.250L
- n = ?
1 × 0.250 = n × 0.0821 × 373
0.250 = 30.62n
n = 0.250 ÷ 30.62
n = 8.16 × 10-³mol
Therefore, there are 8.16 × 10-³ moles of CO2 gas at 100°C with a volume of 250 mL at 760 mm Hg.
Learn more about number of moles at: brainly.com/question/4147359
It is being aware of things around you and the decisions you make. Being in control of your own actions.
Answer:
<h3>The answer is 5.0 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 100 g
volume = 20 mL
So we have

We have the final answer as
<h3>5.0 g/mL</h3>
Hope this helps you
Answer:
Explanation:
A binary molecular compound is a molecular compound that is composed of two elements. In general, the elements that combine to form binary molecular compounds are both nonmetals. This contrasts with ionic compounds, which usually involve bonds between metal ions and nonmetal ions.