Answer:
Explanation:
Ionization energy of hydrogen atom is 13.6 eV . This energy will be provided by energetic proton , the kinetic energy of which is 1000 eV. The kinetic energy of ionized electron is 15.2 eV . Kinetic energy of proton produced from from the ionization of hydrogen or the nucleus of the hydrogen atom is 4.3 eV . All these energy must have come from kinetic energy of initial proton.
So kinetic energy of projectile proton after collision
= 1000 - ( 13.6 + 15.2 + 4.3 ) eV.
= 966.9 eV .
Answer:
the positive electrode is an anode, and the negative electrode is a cathode.
Explanation:
Answer:
Explanation:
The relative massive alpha particles could go through the gold foil without being deviated of their trajectory or only small deviations due to the uniformity distribution positive charge of the protons.
To determine the concentration of one solution which is specifically basic or acidic solution through taking advantage on its points of equivalence, titration analysis is done.
Let us determine the reaction for the titration below:
2NaOH +2H2SO4 = Na2SO4 +2H2O
So,
0.0665 mol NaOH (2 mol H2SO4/ 2mol NaOH) / .025 L solution
= 2.62 M H2SO4
The answer is the fourth option:
<span>2.62 M</span>
Answer:
a. Approximately
.
b. Approximately
.
Explanation:
The unit of concentration "
" is equivalent to "
", which means "moles per liter."
However, the volume of both solutions were given in mililiters
. Convert these volumes to liters:
.
.
In a solution of volume
where the concentration of a solute is
, there would be
(moles of) formula units of this solute.
Calculate the number of moles of
formula units in each of the two solutions:
Solution in a.:
.
Solution in b.:
.
What volume of that
(same as
)
solution would contain that many
For the solution in a.:
.
Convert the unit of that volume to milliliters:
.
Similarly, for the solution in b.:
.
Convert the unit of that volume to milliliters:
.