Answer:
in the downward movement of the movement when the constant is lost
Explanation:
When the coin is on the piston it has a relationship given by
a = d²x / dt²
the piston position is
x = A cos wt
a = - A w² cos wt
the maximum acceleration is
a = - A w²
When the piston raises the acceleration of gravity and that of the piston go in the same direction, when the piston descends they relate it is contrary to gravity, therefore when the frequency increases, the point where the acceleration of the piston is greater than gravity arrives and the coin loses contact.
The point where you lose contact is
a = g
g = A w²
In short, in the downward movement of the movement when the constant is lost
Answer:
C
Explanation:
why because if something is conserved, it is constant, and does not change with time. A moving body may change its position, acceleration, and velocity with time, but it's energy is constant. The conversation of energy law states that: In any closed system (isolated system) the total energy of the system remain constant.
Mathematically it is written as

So the question is asking for time.
Time= distance / speed
120/30
4
Therefore answer is d
Answer:
Fracturing can emit seismic waves through the ground.
Explanation:
I believe the answer is seismic, I've studied this before.
Answer:
Therefore, the revolutions that each tire makes is:

Explanation:
We can use the following equation:
(1)
The angular acceleration is:



and the initial angular velocity is:



Now, using equation (1) we can find the revolutions of the tire.

Therefore, the revolutions that each tire makes is:

I hope it helps you!