As per the question the wavelength of the microwave is given as 3.52 mm.
we are asked to calculate the frequency of the wave.
we know that microwave is a electromagnetic wave.
As per Clark Maxwell's electromagnetic theory ,every electromagnetic wave moves with a velocity equal to the velocity of light in vacuum and that is equal to 3×10^8 m/s.
From the equation of the wave,we know that velocity of wave is the product of frequency and wavelength.
Mathematically wave velocity
where f is the frequency of the wave and
is the wavelength.
As per the question 

Here 
Hence frequency of the wave 


Here Hertz [Hz] is the unit of frequency.
Answer:
Negligible weights is a change so minor or insignificant to be deemed to have no effect on weight or balance.
Answer: Machanical advantage of the machine is 1.86
Explanation: Machanical advantage of a machine is the ratio of the Force to overcome which is the load in this case 24kg * 10= 240N to the force exerted(Effort) to overcome the load in this case 129N.
So, we have
MA = load/effort
= 240N/129N
= 1.86.
This question is incomplete; here is the complete question:
A phoneme is the largest unit of sound in a word. Please select the best answer from the choices provided
A. T
B. F
The correct answer to this question is F (False)
Explanation:
The word "phoneme" is used to refer to the minimal unit of sound in words, and therefore in language. For example, the first phoneme in the word "man" is "m". These units of sound are essential in language because they make each word unique in meaning and sound. For example, "fan" and "man" are different due to the phonemes "m" and "f". According to this, the phone is not the largest unit of sound but the smallest unit.
Answer:
Distance traveled will be 5.6307 m
Explanation:
Time t = 3 sec
We have given force F = 25 N
We know that force is given by F = ma
So ma = 25 -----------eqn 1
Weight is given by W = 196 N
We know that weight is given by W = mg
So mg = 196 -----------------eqn 2
From equation 1 and equation 2 

Initial velocity is given as 0 so u = 0 m/sec
From second equation of motion 