Answer:
Explanation:
A = 3m
B = 4 m
let the angle between the two vectors is θ.
the resultant of two vectors is given by

(a) R = 7 m
So, 
49 = 9 + 16 + 24 Cosθ
Cosθ = 1
θ = 0°
Thus, the two vectors are inclined at 0°.
(b) R = 1 m
So, 
1 = 9 + 16 + 24 Cosθ
Cosθ = - 1
θ = 180°
Thus, the two vectors are inclined at 180°.
(c) R = 5 m
So, 
25 = 9 + 16 + 24 Cosθ
Cosθ = 0
θ = 90°
Thus, the two vectors are inclined at 90°.
Momentum of the wagon increases by (200 x 3)
= 600 newton-sec
= 600 kg-m/sec
Amplitude is a measure of the size of sound waves. It depends on the amount of energy that started the waves. Greater amplitude waves have more energy and greater intensity, so they sound louder. ... The same amount of energy is spread over a greater area, so the intensity and loudness of the sound is less.
Answer:
341 m/s
Explanation:
Use Bernoulli equation:
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
Assuming no elevation change, h₁ = h₂.
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²
The velocity of the air at the nose is 0 m/s, so:
P₁ = P₂ + ½ ρ v₂²
ΔP = ½ ρ v₂²
Plugging in values:
75000 Pa = ½ (1.29 kg/m³) v²
v = 341 m/s
Answer:
1.79 T
Explanation:
Applying,
F = BILsin∅................ Equation 1
Where F = Force, B = magnetic field, I = current flowing through the wire, L = length of the wire, ∅ = angle between the magntic field and the force
make B the subject of the equation
B = F/ILsin∅............. Equation 2
From the question,
Given: F = 2.15 N, I = 30 A, L = 4.00 cm = 0.04 m, ∅ = 90° (perpendicular to the field)
Substitute these values into equation 2
B = 2.15/(30×0.04×sin90°)
B = 2.15/1.2
B = 1.79 T
Hence the average field strength is 1.79 T