1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetradugi [14.3K]
3 years ago
6

Which of these helps you understand what people are saying to you? A. Interrupting them B. Looking away while they're speaking C

. Thinking about how you'll respond D. Thinking about what they're saying
Physics
2 answers:
Vaselesa [24]3 years ago
7 0
D                  ...................................

densk [106]3 years ago
3 0
I believe the answer is <span> D. Thinking about what they're saying
Interrupting them will make them unable to finish their full message/thought to you. Looking away while they're speaking will make you reduce your attention and unable to process the information properly. Thinking about how you'll response also limit your attention to them and could make you cloud your opinion and misinterpret what's they're saying.</span>
You might be interested in
A sample of a gas has a volume of 639 cm3 when the pressure is 75.9 kPa. What is the volume of the gas when the pressure is incr
const2013 [10]

Answer:

388 cm^3

Explanation:

For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

pV=const.

which can also be rewritten as

p_1 V_1 = p_2 V_2

In our case, we have:

p_1 = 75.9 kPa is the initial pressure

V_1 = 639 cm^3 is the initial volume

p_2 = 125 kPa is the final pressure

Solving for V2, we find the final volume:

v_2 = \frac{p_1 V_1}{p_2}=\frac{(75.9)(639)}{125}=388 cm^3

7 0
4 years ago
A ball is thrown at an angle of 38 degrees to the horizontal. What happens to the magnitude of the ball's vertical acceleration
Brut [27]

Answer:

<em>I belive it is 38 degrees</em>

<em />

Explanation:

7 0
3 years ago
FIGURE 2 shows a 1.5 kg block is hung by a light string which is wound around a smooth pulley of radius 20 cm. The moment of ine
Sindrei [870]

Answer:

At t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

Explanation:

First, we consider all the forces acting on the pulley.

There is only one force acting on the pulley, and that is due to the 1.5 kg mass attached to it.

Therefore, the torque on the pulley is

\tau=Fd=mg\cdot R

where m is the mass of the block, g is the acceleration due to gravity, and R is the radius of the pulley.

Now we also know that the torque is related to angular acceleration α by

\tau=I\alpha

therefore, equating this to the above equation gives

mg\cdot R=I\alpha

solving for alpha gives

\alpha=\frac{mgR}{I}

Now putting in m = 1.5 kg, g = 9.8 m/s^2, R = 20 cm = 0.20 m, and I = 2 kg m^2 gives

\alpha=\frac{1.5\cdot9.8\cdot0.20}{2}\boxed{\alpha=1.47s^{-2}}

Now that we have the value of the angular acceleration in hand, we can use the kinematics equations for the rotational motion to find the angular velocity and the number of revolutions at t = 4.2 s.

The first kinematic equation we use is

\theta=\theta_0+\omega_0t+\frac{1}{2}\alpha t^2

since the pulley starts from rest ω0 = 0 and theta = 0; therefore, we have

\theta=\frac{1}{2}\alpha t^2

Therefore, ar t = 4.2 s, the above gives

\theta=\frac{1}{2}(1.47)(4.2)^2

\boxed{\theta=12.97}

So how many revolutions is this?

To find out we just divide by 2 pi:

\#\text{rev}=\frac{\theta}{2\pi}=\frac{12.97}{2\pi}\boxed{\#\text{rev}=2.06}

Or about 2 revolutions.

Now to find the angular velocity at t = 4.2 s, we use another rotational kinematics equation:

\omega^2=w^2_0+2\alpha(\Delta\theta)_{}

Since the pulley starts from rest, ω0 = 0. The change in angle Δθ we calculated above is 12.97. The value of alpha we already know to be 1.47; therefore, the above becomes:

\omega^2=0+2(1.47)(12.97)w^2=38.12\boxed{\omega=6.17.}

Hence, the angular velocity at t = 4.2 w is 6. 17 rad / s

To summerise:

at t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

3 0
2 years ago
Why is random sampling and random assignment in experimental research important?
Hunter-Best [27]

So the result is not biased or affected in some way

6 0
3 years ago
Mathphys :( im sorry i annoy you
Vitek1552 [10]

Answer:

4. 7.59276

Explanation:

Add up the x components:

Aₓ + Bₓ + Cₓ = 5 − 1.6 + 2.4 = 5.8

Add up the y components:

Aᵧ + Bᵧ + Cᵧ = -2.4 + 3.3 + 4 = 4.9

Use Pythagorean theorem to find the magnitude:

√(x² + y²)

√(5.8² + 4.9²)

√57.65

7.59276

3 0
3 years ago
Other questions:
  • In which scenario does radiation occur?
    7·2 answers
  • If two deuterium nuclei (charge +e, mass 3.34×10−27kg) get close enough together, the attraction of the strong nuclear force wil
    11·1 answer
  • An electron in an atom has an uncertainty of 0.2 nm. If it is doubled to 0.4 nm by what factor does the uncertainty in momentum
    5·1 answer
  • A scientist has two containers. Inside each container, there is a blue liquid. The liquids are substances. What can the scientis
    8·1 answer
  • What is light? Makes thing visible?
    7·1 answer
  • What happens to an object when an unbalanced force acts on it?
    11·1 answer
  • JUDET
    5·1 answer
  • Change the following as indicated in the brackets.<br> 8m (km,cm)​
    8·2 answers
  • A 2.0 kg stone is tied to a 0.30 m string and swung around a circle at a constant angular velocity of 12.0 rad/s. The net torque
    8·1 answer
  • 1. How does the % error compare to the coded tolerance for your resistors​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!