Answer:
0.301 m
Explanation:
Torque = Force × Radius
τ = Fr
40.0 Nm = 133 N × r
r = 0.301 m
The mechanic must apply the force 0.301 m from the nut.
The whole definition of frequency is: <em>How often something happens. </em>
Especially referring to something that happens over and over and over and over.
One example is Choice-C: How often the particles of a medium vibrate.
"Frequency" comes from the word "frequent". That means "often", and "frequency" just means "often-ness" ... HOW often the thing happens.
Some other examples:
Frequency of jump-roping . . . maybe 60 per minute .
Frequency of rain . . . maybe 5 per month .
Frequency of an AM radio station . . . maybe 1 million waves per second.
(If it's something <u><em>per second</em></u>, then we call it "Hertz". That's not for the car rental company. It's for Heinrich Hertz, the German Physicist who was the first one to prove that electromagnetic waves exist. He sent radio waves all the way ACROSS HIS LABORATORY and detected them at the other side ( ! ), in 1887.)
Frequency of the wiggles in the sound wave coming out of a trumpet playing the note ' A ' . . . 440 Hertz.
Frequency of sunrise and the Chicago Tribune newspaper . . . 1 per day
Frequency of the cycle of Moon phases and an average human woman's ovulation cycle: 1 per 29.531 days, 1 per ~28 days .
Answer:
Burning Paper
Explanation:
This is a chemical reaction, because new substances are formed
The time when the particle is at rest is at 1.63 s or 3.36 s.
The velocity is positive at when the time of motion is at
.
The total distance traveled in the first 10 seconds is 847 m.
<h3>When is a particle at rest?</h3>
- A particle is at rest when the initial velocity of the particle is zero.
The time when the particle is at rest is calculated as follows;
s(t) = 2t³ - 15t² + 33t + 17

The velocity is positive at when the time of motion is as follows;
.
The total distance traveled in the first 10 seconds is calculated as follows;

Learn more about motion of particles here: brainly.com/question/11066673
Answer:
V1=<u>2.5ft3</u>
<u>V2=1ft3</u>
n=1.51
Explanation:
PART A:
the volume of each state is obtained by multiplying the mass by the specific volume in each state
V=volume
v=especific volume
m=mass
V=mv
state 1
V1=m.v1
V1=2lb*1.25ft3/lb=<u>2.5ft3</u>
state 2
V2=m.v2
V2=2lb*0.5ft3/lb= <u> 1ft3</u>
PART B:
since the PV ^ n is constant we can equal the equations of state 1 and state 2
P1V1^n=P2V2^n
P1/P2=(V2/V1)^n
ln(P1/P2)=n . ln (V2/V1)
n=ln(P1/P2)/ ln (V2/V1)
n=ln(15/60)/ ln (1/2.5)
n=1.51