Answer:
Vmax=11.53 m/s
Explanation:
from conservation of energy

Spring potential energy =potential energy due to elevation
0.5*k*x²= mg
=mgh
0.5*k*2.3²= 430*9.81*6
k=9568.92 N/m
For safety reason
k"=1.13 *k= 1.13*9568.92
k"=10812.88 N/m
agsin from conservation of energy

spring potential energy=change in kinetic energy
0.5*k"*x²=0.5*m*
10812.88 *2.3²=430*
=11.53 m/s
Definition: Momentum = (mass) x (speed)
OK. Here we go.
Watch closely:
Divide each side
by 'mass' : <span>Momentum / mass = Speed </span>
Did you follow that ?
The answer would be 6 because 2.0x3= 6
(newton’s 2nd law)
mark me brainliest
In order to determine the acceleration of the block, use the following formula:

Moreover, remind that for an object attached to a spring the magnitude of the force acting over a mass is given by:

Then, you have:

by solving for a, you obtain:

In this case, you have:
k: spring constant = 100N/m
m: mass of the block = 200g = 0.2kg
x: distance related to the equilibrium position = 14cm - 12cm = 2cm = 0.02m
Replace the previous values of the parameters into the expression for a:

Hence, the acceleration of the block is 10 m/s^2
When light travels from a medium with higher refractive index to a medium with lower refractive index, there is a critical angle after which all the light is reflected (so, there is no refraction).
The value of this critical angle can be derived by Snell's law, and it is equal to

where n2 is the refractive index of the second medium and n1 is the refractive index of the first medium.
In our problem, n1=1.47 and n2=1.33, so the critical angle is