To solve this problem it is necessary to apply the concepts related to gravity as an expression of a celestial body, as well as the use of concepts such as centripetal acceleration, angular velocity and period.
PART A) The expression to find the acceleration of the earth due to the gravity of another celestial body as the Moon is given by the equation
Where,
G = Gravitational Universal Constant
d = Distance
M = Mass
Radius earth center of mass
PART B) Using the same expression previously defined we can find the acceleration of the moon on the earth like this,
PART C) Centripetal acceleration can be found throughout the period and angular velocity, that is
At the same time we have that centripetal acceleration is given as
Replacing
Answer: 1433.3 m/min
Explanation:
For 86 Km/h converted to a (m/min), convert kilometers to meters, and hour to minutes
So, 86 Km/h means 86 kilometers per 1 hour
- If 1 kilometer = 1000 metres
86 kilometers = 86 x 1000 = 86,000m
- If 1 hour = 60 minute
1 hour = 60 minutes
In m/min: (86,000m / 60 minute)
= 1433.3 m/min
Thus, 86 Km/h convert to 1433.3 m/min
Answer: C
Frictional force
Explanation:
The description of the question above is an example of a circular motion.
For a car travelling in a curved path, the frictional force between the tyres and the road surface will provide the centripetal force.
Since the road is banked, and the cross section of the banked road is constructed like a ramp. The car drives transversely to the slope of the ramp, so that the wheels of one side of the car are lower than the wheels on the other side of the car, for cornering the banked road, the car will not rely only on the frictional force.
Therefore, the correct answer is option C - the frictional force.
Answer:
B
Explanation:
YOUR MUM NOOB SORRY MY MAD THE ANSWER WILL BE B BECAUSE B IS THE BEST YAY.
The potential energy of an object is defined by the equation: PE = mgh, where m = the mass of the object, g = the gravitational acceleration and h = the object's height above the ground.