Answer:
Use equation for kinetic energy: Ek=mV²/2
m=700 kg
V=10m/s
Ek=700kg*100m²7s²/2
Ek=35000 J=35kJ
Explanation:
Hope this helps you
Do mark me as brainliest
You may jump higher because the more the mass of the planet, the more gravitational force. There is less mass(and gravity) on Callisto so you wouldn’t be weighed down as much and can jump higher. Whereas on Jupiter there is more weight holding you down.
Explanation:
Below is an attachment containing the solution.
Answer:
Energy production requires the setting up of a complete interconnected chain from generation of energy from the root source of the energy to the storage of the generated energy and the eventual utilization of the energy when required
Solar energy, indirectly, continues to be the main source of energy, however, the direct use of solar energy to power the systems we use in our everyday life, require the development of technologies, such as high efficiency solar cells, means of energy storage, and compatible efficient energy usage which are industrial areas that are seeing good progress but in which the current developed equipment are expensive to produce, and due to their efficiency, are undergoing further research and development
Therefore, due to the continuous increasing improvement in solar technology which can observed, the use of the produced energy through solar is evolving, and therefore, will continue to play a continuously increasing but lower role compared to other sources of energy which have been developed to satisfactory level that can drive an industry, considering the financial investment involved
Explanation:
Answer:
1. 
2. 
3. 
Explanation:
Given:
- mass of slinky,

- length of slinky,

- amplitude of wave pulse,

- time taken by the wave pulse to travel down the length,

- frequency of wave pulse,

1.



2.
<em>Now, we find the linear mass density of the slinky.</em>


We have the relation involving the tension force as:




3.
We have the relation for wavelength as:


