Q1. The answer is 8.788 m/s
V2 = V1 + at
V1 - the initial velocity
V2 - the final velocity
a - the acceleration
t - the time
We have:
V1 = 4.7 m/s
a = 0.73 m/s²
t = 5.6 s
V2 = ?
V2 = 4.7 + 0.73 * 5.6
V2 = 4.7 + 4.088
V2 = 8.788 m/s
Q2. The answer is 9.22 s
V2 = V1 + at
V1 - the initial velocity
V2 - the final velocity
a - the acceleration
t - the time
We have:
V2 = 0 (because it reaches a complete stop)
V1 = 4.7 m/s
a = -0.51 m/s²
t = ?
0 = 4.7 + (-0.51)*t
0 = 4.7 - 0.51t
0.51t = 4.7
t = 4.7 / 0.51
t = 9.22 s
Answer:
frequency is 195.467 Hz
Explanation:
given data
length L = 4.36 m
mass m = 222 g = 0.222 kg
tension T = 60 N
amplitude A = 6.43 mm = 6.43 ×
m
power P = 54 W
to find out
frequency f
solution
first we find here density of string that is
density ( μ )= m/L ................1
μ = 0.222 / 4.36
density μ is 0.050 kg/m
and speed of travelling wave
speed v = √(T/μ) ...............2
speed v = √(60/0.050)
speed v = 34.64 m/s
and we find wavelength by power that is
power = μ×A²×ω²×v / 2 ....................3
here ω is wavelength put value
54 = ( 0.050 ×(6.43 ×
)²×ω²× 34.64 ) / 2
0.050 ×(6.43 ×
)²×ω²× 34.64 = 108
ω² = 108 / 7.160 ×
ω = 1228.16 rad/s
so frequency will be
frequency = ω / 2π
frequency = 1228.16 / 2π
frequency is 195.467 Hz
True, They contain old stars and posses little gas or dust
You don't need to worry about the 10 year bit with this question. Just grab a calculator and divide 100/2, then the answer to that (50) by 2 etc and keep dividing by 2 until you get down to 6.25.
The answer ends up being 4 half lives :)
If you don't understand what a half life is please let me know :)