Hi there,
the answer to the blank is: boiling point
When a liquid is heated, the temperature stops rising at the liquid's boiling point.
Hope this is correct :)
Have a great day
Answer:
Normalidad = 4N
%p/V = 27.6%
Explanation:
La solución 2M de carbonato de potasio contiene 2moles de carbonato por litro de solución. La normalidad son los equivalente de carbonato de potasio (2eq/mol) por litro de solución:
2moles * (2eq/mol) = 4eq / 1L = 4N
El porcentaje peso volumen es el peso de carbonato en gramos dividido en el volumen en mL por 100:
%p/V:
Masa K2CO3 -Masa molar: 138.205g/mol-
2moles * (138.205g/mol) = 276g K2CO3
Volumen:
1L * (1000mL/1L) = 1000mL
%p/V:
276g K2CO3 / 1000mL * 100
<h3>%p/V = 27.6%</h3>
Pure- table salt
Impure- vegetable oil
Answer : The value of
for the reaction is -959.1 kJ
Explanation :
The given balanced chemical reaction is,

First we have to calculate the enthalpy of reaction
.

![\Delta H^o=[n_{H_2O}\times \Delta H_f^0_{(H_2O)}+n_{SO_2}\times \Delta H_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta H_f^0_{(H_2S)}+n_{O_2}\times \Delta H_f^0_{(O_2)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%3D%5Bn_%7BH_2O%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28H_2O%29%7D%2Bn_%7BSO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28SO_2%29%7D%5D-%5Bn_%7BH_2S%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28H_2S%29%7D%2Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28O_2%29%7D%5D)
where,
= enthalpy of reaction = ?
n = number of moles
= standard enthalpy of formation
Now put all the given values in this expression, we get:
![\Delta H^o=[2mole\times (-242kJ/mol)+2mole\times (-296.8kJ/mol)}]-[2mole\times (-21kJ/mol)+3mole\times (0kJ/mol)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%3D%5B2mole%5Ctimes%20%28-242kJ%2Fmol%29%2B2mole%5Ctimes%20%28-296.8kJ%2Fmol%29%7D%5D-%5B2mole%5Ctimes%20%28-21kJ%2Fmol%29%2B3mole%5Ctimes%20%280kJ%2Fmol%29%5D)

conversion used : (1 kJ = 1000 J)
Now we have to calculate the entropy of reaction
.

![\Delta S^o=[n_{H_2O}\times \Delta S_f^0_{(H_2O)}+n_{SO_2}\times \Delta S_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta S_f^0_{(H_2S)}+n_{O_2}\times \Delta S_f^0_{(O_2)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5Bn_%7BH_2O%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28H_2O%29%7D%2Bn_%7BSO_2%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28SO_2%29%7D%5D-%5Bn_%7BH_2S%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28H_2S%29%7D%2Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28O_2%29%7D%5D)
where,
= entropy of reaction = ?
n = number of moles
= standard entropy of formation
Now put all the given values in this expression, we get:
![\Delta S^o=[2mole\times (189J/K.mol)+2mole\times (248J/K.mol)}]-[2mole\times (206J/K.mol)+3mole\times (205J/K.mol)]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5B2mole%5Ctimes%20%28189J%2FK.mol%29%2B2mole%5Ctimes%20%28248J%2FK.mol%29%7D%5D-%5B2mole%5Ctimes%20%28206J%2FK.mol%29%2B3mole%5Ctimes%20%28205J%2FK.mol%29%5D)

Now we have to calculate the Gibbs free energy of reaction
.
As we know that,

At room temperature, the temperature is 500 K.


Therefore, the value of
for the reaction is -959.1 kJ
Answer:
1.9 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 1.5 atm
- Initial volume (V₁): 3.0 L
- Initial temperature (T₁): 293 K
- Final pressure (P₂): 2.5 atm
- Final temperature (T₂): 303 K
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 1.5 atm × 3.0 L × 303 K / 293 K × 2.5 atm = 1.9 L