Answer:
The first is the empirical formula which shows you the number of different atoms in the compound. After you convert the grams of each element into moles, you calculate the ratio of the moles, which gives you the ratio of the elements in the compound. More number-crunching gives you the molecular formula.
Answer:
0.246 kg
Explanation:
There is some info missing. I think this is the original question.
<em>A chemist adds 370.0mL of a 2.25 M iron(III) bromide (FeBr₃) solution to a reaction flask. Calculate the mass in kilograms of iron(III) bromide the chemist has added to the flask. Be sure your answer has the correct number of significant digits.</em>
<em />
We have 370.0 mL of 2.25 M iron(III) bromide (FeBr₃) solution. The moles of FeBr₃ are:
0.3700 L × 2.25 mol/L = 0.833 mol
The molar mass of iron(III) bromide is 295.56 g/mol. The mass corresponding to 0.833 moles is:
0.833 mol × 295.56 g/mol = 246 g
1 kilogram is equal to 1000 grams. Then,
246 g × (1 kg/1000 g) = 0.246 kg
Answer:
why can you never trust a atom
Explanation:
they make everything up
Answer:
any gas takes up 22.4L per mole so 2.4*22.4=53.76
Explanation: