Answer:
<em></em>
<em></em>
Explanation:
Roughly 96 percent of the mass of the human body is made up of just four elements: oxygen, carbon, hydrogen and nitrogen, with a lot of that in the form of water. The remaining 4 percent is a sparse sampling of the periodic table of elements
Hope this helps :)
Answer:
The age of the sample is 4224 years.
Explanation:
Let the age of the sample be t years old.
Initial mass percentage of carbon-14 in an artifact = 100%
Initial mass of carbon-14 in an artifact = ![[A_o]](https://tex.z-dn.net/?f=%5BA_o%5D)
Final mass percentage of carbon-14 in an artifact t years = 60%
Final mass of carbon-14 in an artifact = ![[A]=0.06[A_o]](https://tex.z-dn.net/?f=%5BA%5D%3D0.06%5BA_o%5D)
Half life of the carbon-14 = 

![[A]=[A_o]\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-kt%7D)
![[A]=[A_o]\times e^{-\frac{0.693}{t_{1/2}}\times t}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-%5Cfrac%7B0.693%7D%7Bt_%7B1%2F2%7D%7D%5Ctimes%20t%7D)
![0.60[A_o]=[A_o]\times e^{-\frac{0.693}{5730 year}\times t}](https://tex.z-dn.net/?f=0.60%5BA_o%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-%5Cfrac%7B0.693%7D%7B5730%20year%7D%5Ctimes%20t%7D)
Solving for t:
t = 4223.71 years ≈ 4224 years
The age of the sample is 4224 years.
Answer:
Formation. Main-sequence stars, including the sun, form from clouds of dust and gas drawn together by gravity. ... The core that is left behind will be a white dwarf, a husk of a star in which no hydrogen fusion occurs. Smaller stars, such as red dwarfs, don't make it to the red giant state.
Explanation:
Answer:
118.22 atm
Explanation:
2SO₂(g) + O₂(g) ⇌ 2SO₃(g)
KP = 0.13 = 
Where p(SO₃) is the partial pressure of SO₃, p(SO₂) is the partial pressure of SO₂ and p(O₂) is the partial pressure of O₂.
- With 2.00 mol SO₂ and 2.00 mol O₂ if there was a 100% yield of SO₃, then 2 moles of SO₃ would be produced and 1.00 mol of O₂ would remain.
- With a 71.0% yield, there are only 2*0.71 = 1.42 mol SO₃, the moles of SO₂ that didn't react would be 2 - 1.42 = 0.58; and the moles of O₂ that didn't react would be 2 - 1.42/2 = 1.29.
The total number of moles is 1.42 + 0.58 + 1.29 = 3.29. With that value we can calculate the molar fraction (X) of each component:
The partial pressure of each gas is equal to the total pressure (PT) multiplied by the molar fraction of each component.
Rewriting KP and solving for PT:

Answer:
KBr is limiting reactant.
Explanation:
Given data:
Mass of KBr =4g
Mass of Cl₂ = 6 g
Limiting reactant = ?
Solution:
Chemical equation:
2KBr + Cl₂ → 2KCl + Br₂
Number of moles of KBr:
Number of moles = mass/molar mass
Number of moles = 4 g/ 119 gmol
Number of moles = 0.03 mol
Number of moles of Cl₂:
Number of moles = mass/molar mass
Number of moles = 6 g/ 70 gmol
Number of moles = 0.09 mol
Now we will compare the moles of reactant with product.
KBr : KCl
2 : 2
0.03 : 0.03
KBr : Br₂
2 : 1
0.03 : 1/2×0.03= 0.015
Cl₂ : KCl
1 : 2
0.09 : 2/1×0.09 = 0.18
Cl₂ : Br₂
1 : 1
0.09 : 0.09
Less number of moles of product are formed by the KBr thus it will act as limiting reactant while Cl₂ is present in excess.