If the fulcrum is closer to the effort, then the load will move a greater distance. A pair of tweezers, swinging a baseball bat or using your arm to lift something are examples of third class levers.
Answer:
A physical matter
Explanation:
A kind of matter with uniform physical properties
First question: 800J
Second question: 20.4m
Answer:
No work is performed or required in moving the positive charge from point A to point B.
Explanation:
Lets take
Q= Positive charge which move from point A to point B along
Voltage difference,ΔV =V₁ - V₂
The work done
W = Q . ΔV
Given that charge is moved from point A to point B along an equipotential surface.It means that voltage difference is zero.
ΔV = 0
So
W = Q . ΔV
W = Q x 0
W= 0 J
So work is zero.
Answer:
a) x = 0.200 m
b)E = 3.84*10^{-4} N/C
Explanation:


DISTANCE BETWEEN BOTH POINT CHARGE = 0.5 m
by relation for electric field we have following relation

according to question E = 0
FROM FIGURE
x is the distance from left point charge where electric field is zero

solving for x we get

x = 0.200 m
b)electric field at half way mean x =0.25

E = 3.84*10^{-4} N/C