Answer:
Temperature : 92.9 F
Internal Energy change: -2.53 Btu/lbm
Explanation:
As
mh1=mh2
h1=h2
In table A-11 through 13E
p2=120Psi, h1= 41.79 Btu/lbm,
u1=41.49
So T1=90.49 F
P2=20Psi
h2=h1= 41.79 Btu/lbm
T2= -2.43F
u2= 38.96 Btu/lbm
T2-T1 = 92.9 F
u2-u1 = -2.53 Btu/lbm
You can put the name of the product and the price and add another column and add all of your expenses<span />
Answer:
Explanation:
fundamental frequency, f = 250 Hz
Let T be the tension in the string and length of the string is l ans m be the mass of the string initially.
the formula for the frequency is given by
.... (1)
Now the length is doubled ans the tension is four times but the mass remains same.
let the frequency is f'
.... (2)
Divide equation (2) by equation (1)
f' = √2 x f
f' = 1.414 x 250
f' = 353.5 Hz
Answer:
the two gliders collide, the mobile glider will transfer a bit of time to the fixed glider, which is why it comes out with a speed that is smaller than that of the bullet glider.
Explanation:
When the two gliders collide, the mobile glider will transfer a bit of time to the fixed glider, which is why it comes out with a speed that is smaller than that of the bullet glider.
Changes can occur that the gliders unite and move with a cosecant speed less than the initial one.
The whole process must be analyzed using conservation of the moment.
p₀ = m v₀
celestines que clash case
p_f = (m + M) v
po = pf
m v₀ = (n + M) v
v = 
calculemos
v= 
v= 0.09 m/s
elastic shock case
p₀ = m v₀
p_f = m v₁ +M v₂
p₀ = p_f
m v₀ = m v₁ + m v₂