Explanation:
a. Average kinetic energy is directly proportional to absolute Kelvin temperature of a gas.
Yes
b. There are no attractive forces and repulsive forces between gas molecules.
Yes
C. Atoms are neither created nor destroyed by ordinary chemical reactions.
No
d. The volume occupied by all of the gas molecules in a container is negligible compared to the volume of the container
Yes
The kinetic molecular theory is one of such theories used to explain the forces between molecules and the energy they posses.
According to the theory;
- The temperature of gas is proportional to the average kinetic energy.
- Molecules are independent of one another and the force of attraction and repulsion between them is negligible.
- volume occupied by gases is negligible compared to the volume of the container.
Law of conservation of matter states that "atoms are neither created nor destroyed by ordinary chemical reactions".
learn more:
Kinetic molecular theory brainly.com/question/12362857
#learnwithBrainly
Answer:
10B has 18.9%
11B has 81.1%
Explanation:Please see attachment for explanation
This problem is describing a gas mixture whose mole fraction of hexane in nitrogen is 0.58 and which is being fed to a condenser at 75 °C and 3.0 atm, obtaining a product at 3.0 atm and 20 °C, so that the removed heat from the system is required.
In this case, it is recommended to write the enthalpy for each substance as follows:
Whereas the specific heat of liquid and gaseous n-hexane are about 200 J/(mol*K) and 160 J/(mol*K) respectively, its condensation enthalpy is 31.5 kJ/mol, boiling point is 69 °C and the specific heat of gaseous nitrogen is about 29.1 J/(mol*K) according to the NIST data tables and and are the mole fractions in the gaseous mixture. Next, we proceed to the calculation of both heat terms as shown below:
It is seen that the heat released by the nitrogen is neglectable in comparison to n-hexanes, however, a rigorous calculation is being presented. Then, we add the previously calculated enthalpies to compute the amount of heat that is removed by the condenser:
Finally we convert this result to kJ:
Learn more:
Answer:
219.95 °C
Explanation:
Given data:
Volume of gas = 9.71 L
Initial pressure = 209 torr (209/760 = 0.275 atm)
Initial temperature = 10.1 °C (10.1 +273 = 283.1 K)
Final temperature = ?
Final pressure = 364 torr (364/760 =0.479 atm)
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
0.275 atm / 283.1 K = 0.479 atm/T₂
T₂ = 0.479 atm × 283.1 K/ 0.275 atm
T₂ = 135.6 atm. K /0.275 atm
T₂ = 493.1 K
Kelvin to °C:
493.1 K - 273.15 = 219.95 °C