Answer:
glycerol-3-phosphate, ADP, H⁺
Explanation:
The reaction of converting glycerol to glycerol-3-phosphate which makes is unfavorable and is coupled with the second reaction which involves conversion of ATP to ADP which is high energetically favorable.
Reaction 1: Glycerol + HPO₄²⁻ ⇒ Glycerol-3-phosphate + water
Reaction 2: ATP + H₂O ⇒ ADP + HPO₄²⁻ + H⁺
The coupled reaction of both the reactions become favorable. Thus, the overall coupled reaction is:
<u>Glycerol + ATP ⇒ Glycerol-3-phosphate + ADP + H⁺</u>
The net products are = glycerol-3-phosphate, ADP, H⁺
<span>1.40 x 10^5 kilograms of calcium oxide
The reaction looks like
SO2 + CaO => CaSO3
First, determine the mass of sulfur in the coal
5.00 x 10^6 * 1.60 x 10^-2 = 8.00 x 10^4
Now lookup the atomic weights of Sulfur, Calcium, and Oxygen.
Sulfur = 32.065
Calcium = 40.078
Oxygen = 15.999
Calculate the molar mass of CaO
CaO = 40.078 + 15.999 = 56.077
Since 1 atom of sulfur makes 1 atom of sulfur dioxide, we don't need the molar mass of sulfur dioxide. We merely need the number of moles of sulfur we're burning. divide the mass of sulfur by the atomic weight.
8.00 x 10^4 / 32.065 = 2.49 x 10^3 moles
Since 1 molecule of sulfur dioxide is reacted with 1 molecule of calcium oxide, just multiply the number of moles needed by the molar mass
2.49 x 10^3 * 56.077 = 1.40 x 10^5
So you need to use 1.40 x 10^5 kilograms of calcium oxide per day to treat the sulfur dioxide generated by burning 5.00 x 10^6 kilograms of coal with 1.60% sulfur.</span>
Answer:
16 percent
Explanation:
Just answered the question
Answer:
T2= 7.3°C
Explanation:
To solve this problem we will use Charles law equation i.e,
V1/T1 = V2/T2
Given data
V1 = 269.7 L
T1 = 6.12 °C
V2= 320.4 L
T2=?
Solution:
Now we will put the values in equation
269.7 L / 6.12°C = 320.4 L / T2
T2= 320.4 L × 6.12°C/ 269.7 L
T2= 1960.85 °C. L /269.7 L
T2= 7.3°C
I believe the answer is
At the moment it is the best way of explaining our scientific knowledge.