Answer:
c are there 93.5 of c yan siguro
Balanced chemical reaction:
2Na₃PO₄(aq) + 3CaCl₂(aq) → 6NaCl(aq) + Ca₃(PO₄)₂(s).
Ionic reaction:
6Na⁺(aq) + 2PO₄³⁻(aq) + 3Ca²⁺(aq) + 6Cl⁻(aq) → 6Na⁺(aq) + 6Cl⁻(aq) + Ca₃(PO₄)₂(s).
Net ionic reaction: 2PO₄³⁻(aq) + 3Ca²⁺(aq) → Ca₃(PO₄)₂(s).
<span>(aq) means that
substances are dissociated on cations and anions in water.
</span>(s) means solid.
Answer:
T₂ = 317.87 K
Explanation:
Given data:
Initial pressure = 15 atm
Final pressure = 16 atm
Initial temperature = 298 K
Final temperature = ?
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
15 atm / 298K = 16 atm/T₂
T₂ = 16atm × 298 K / 15 atm
T₂ = 4768 atm. K / 15 atm
T₂ = 317.87 K
The question is incomplete, here is the complete question:
Carbon tetrachloride reacts at high temperatures with oxygen to produce two toxic gases, phosgene and chlorine.
at 1,000 K
Calculate Kc for the reaction 
<u>Answer:</u> The value of
for the final reaction is 
<u>Explanation:</u>
The given chemical equations follows:

We need to calculate the equilibrium constant for the equation, which is:

As, the final reaction is the twice of the initial equation. So, the equilibrium constant for the final reaction will be the square of the initial equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:

Putting values in above equation, we get:

Hence, the value of
for the final reaction is 
Answer:
Explanation:
What occurred then is as a result of nuclear fission. This occurs as the Uranium-235 split into two smaller nuclei while releasing high energy neutrons. These neutrons bombard existing U-235 in the atmosphere and this reaction continue in a spontaneous manner until a chain reaction is formed of U-235, whose fall out fills the environment. This process was what led to people been exposed to high intensity radiation in the days and months after the atomic bomb was dropped.