Answer:
118750 ml
Explanation:
The chemical equation for complete combustion of hexane is given as;
2C6H14 + 19O2 → 12CO2 + 14H2O
From the equation of the reaction;
2 mol of C6H14 reacts with 19 mol of O2
2 ml of C6H14 reacts with 19 ml of O2
2500 mL of C6H14 would react with x ml of O2
2 = 19
2500 = x
x = 2500 * 19 / 2 = 23750 ml
Since oxygen is 20% of air;
23750 = 20 / 100 * (Volume of air)
Volume of air = 23750 * 100 / 20 = 118750 ml
Answer:
a. -0.63 V
b. No
Explanation:
Step 1: Given data
- Standard reduction potential of the anode (E°red): -1.33 V
- Minimum standard cell potential (E°cell): 0.70 V
Step 2: Calculate the required standard reduction potential of the cathode
The galvanic cell must provide at least 0.70V of electrical power, that is:
E°cell > 0.70 V [1]
We can calculate the standard reduction potential of the cathode (E°cat) using the following expression.
E°cell = E°cat - E°an [2]
If we combine [1] and [2], we get,
E°cat - E°an > 0.70 V
E°cat > 0.70 V + E°an
E°cat > 0.70 V + (-1.33 V)
E°cat > -0.63 V
The minimum E°cat is -0.63 V and there is no maximum E°cat.
1.1 Moles / 0.5 Liters = 0.22 Molarity
Kc = [H3O+][HCO3-] / [H2CO3]
Remember that Kc is products over reactants. Also, you do not include liquid water in a Kc expression, since liquid water has no concentration.
Although all gases closely follow the ideal gas law PV = nRT under appropriate conditions, each gas is also a unique chemical substance consisting of molecular units that have definite masses. In this lesson we will see how these molecular masses affect the properties of gases that conform to the ideal gas law.