Answer:
233.1 miles per hours
Explanation:
Speed: This is defined as the ratio of distance to time. The S.I unit of speed is m/s. speed is a vector quantity because it can only be represented by magnitude only. Mathematically, speed can be expressed as,
S = d/t ....................... Equation 1
Where S = speed of the runner, d = distance covered, t = time.
Given: d = 100 meter , t = 9.580 seconds
Conversion:
If, 1 meter = 0.00062 miles
Then, 100 meters = (0.00062×100) miles = 0.62 miles.
Also
If, 3600 s = 1 h
Then, 9.580 s = (1×9.580)/3600 = 0.00266 hours.
Substitute into equation 1
S = 0.62/0.00266
S = 233.1 miles per hours.
Hence the runner speed is 233.1 miles per hours
Answer:
Approximately 0.0898 W/m².
Explanation:
The intensity of light measures the power that the light delivers per unit area.
The source in this question delivers a constant power of
. If the source here is a point source, that
of power will be spread out evenly over a spherical surface that is centered at the point source. In this case, the radius of the surface will be 9.6 meters.
The surface area of a sphere of radius
is equal to
. For the imaginary 9.6-meter sphere here, the surface area will be:
.
That
power is spread out evenly over this 9.6-meter sphere. The power delivered per unit area will be:
.
Answer:
31.831 Hz.
Explanation:
<u>Given:</u>
The vertical displacement of a wave is given in generalized form as

<em>where</em>,
- A = amplitude of the displacement of the wave.
- k = wave number of the wave =

= wavelength of the wave.- x = horizontal displacement of the wave.
= angular frequency of the wave =
.- f = frequency of the wave.
- t = time at which the displacement is calculated.
On comparing the generalized equation with the given equation of the displacement of the wave, we get,

therefore,

It is the required frequency of the wave.
Answer:
W = 0.060 J
v_2 = 0.18 m/s
Explanation:
solution:
for the spring:
W = 1/2*k*x_1^2 - 1/2*k*x_2^2
x_1 = -0.025 m and x_2 = 0
W = 1/2*k*x_1^2 = 1/2*(250 N/m)(-0.028m)^2
W = 0.060 J
the work-energy theorem,
W_tot = K_2 - K_1 = ΔK
with K = 1/2*m*v^2
v_2 = √2*W/m
v_2 = 0.18 m/s