1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
3 years ago
11

Calculate the average velocity of a dancer who moves 5 m toward the left of the stage over the course of 15 s. ** Velocity = dis

placement/time Question 1 options: A. 3 m/s B. 1/3 m/s C. 1/3 m/s west D. 3 m/s west
Physics
1 answer:
Alex73 [517]3 years ago
3 0

Answer:

B

Explanation:

Velocity=disp/time

V=5m/15s

V=1/3 m/s

You might be interested in
The curvature of the helix r​(t)equals(a cosine t )iplus(a sine t )jplusbt k​ (a,bgreater than or equals​0) is kappaequalsStartF
4vir4ik [10]

Answer:

\kappa = \frac{1}{2 b}

Explanation:

The equation for kappa ( κ) is

\kappa = \frac{a}{a^2 + b^2}

we can find the maximum of kappa for a given value of b using derivation.

As b is fixed, we can use kappa as a function of a

\kappa (a) = \frac{a}{a^2 + b^2}

Now, the conditions to find a maximum at a_0 are:

\frac{d \kappa(a)}{da} \left | _{a=a_0} = 0

\frac{d^2\kappa(a)}{da^2}  \left | _{a=a_0} < 0

Taking the first derivative:

\frac{d}{da} \kappa = \frac{d}{da}  (\frac{a}{a^2 + b^2})

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} \frac{d}{da}(a)+ a * \frac{d}{da}  (\frac{1}{a^2 + b^2} )

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 + a * (-1)  (\frac{1}{(a^2 + b^2)^2} ) \frac{d}{da}  (a^2+b^2)

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 - a  (\frac{1}{(a^2 + b^2)^2} ) (2* a)

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 -  2 a^2  (\frac{1}{(a^2 + b^2)^2} )

\frac{d}{da} \kappa = \frac{a^2+b^2}{(a^2 + b^2)^2}  -  2 a^2  (\frac{1}{(a^2 + b^2)^2} )

\frac{d}{da} \kappa = \frac{1}{(a^2 + b^2)^2} (a^2+b^2 -  2 a^2)

\frac{d}{da} \kappa = \frac{b^2 -  a^2}{(a^2 + b^2)^2}

This clearly will be zero when

a^2 = b^2

as both are greater (or equal) than zero, this implies

a=b

The second derivative is

\frac{d^2}{da^2} \kappa = \frac{d}{da} (\frac{b^2 -  a^2}{(a^2 + b^2)^2} )

\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} \frac{d}{da} ( b^2 -  a^2 ) + (b^2 -  a^2) \frac{d}{da} ( \frac{1}{(a^2 + b^2)^2}  )

\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} ( -2  a ) + (b^2 -  a^2) (-2) ( \frac{1}{(a^2 + b^2)^3}  ) (2a)

\frac{d^2}{da^2} \kappa = \frac{-2  a}{(a^2 + b^2)^2} + (b^2 -  a^2) (-2) ( \frac{1}{(a^2 + b^2)^3}  ) (2a)

We dcan skip solving the equation noting that, if a=b, then

b^2 -  a^2 = 0

at this point, this give us only the first term

\frac{d^2}{da^2} \kappa = \frac{- 2  a}{(a^2 + a^2)^2}

if a is greater than zero, this means that the second derivative is negative, and the point is a minimum

the value of kappa is

\kappa = \frac{b}{b^2 + b^2}

\kappa = \frac{b}{2* b^2}

\kappa = \frac{1}{2 b}

3 0
3 years ago
Match these items and the phrases with which they are associated.
amid [387]
Amount of matter in object is mass.density is mass/volume.h2o is water.drew first picture of atom is Neil's Bohr.l* w* h is volume.basic unit of matter is atom.mixture is concrete.n=1 is inner shell.upward force of a liquid on an object is buoyancy.
4 0
3 years ago
Second<br>class lever short note​
seraphim [82]

Answer:

wow

Explanation:

6 0
3 years ago
Read 2 more answers
Answer the question based on this waveform.
Nuetrik [128]

Answer:

Cannot be determined from the given information

Explanation:

Given the following data;

Velocity = 24 m/s

Period = 3 seconds

To find the amplitude of the wave;

Mathematically, the amplitude of a wave is given by the formula;

x = Asin(ωt + ϕ)

Where;

x is displacement of the wave measured in meters.

A is the amplitude.

ω is the angular frequency measured in rad/s.

t is the time period measured in seconds.

ϕ is the phase angle.

Hence, the information provided in this exercise isn't sufficient to find the amplitude of the waveform.

However, the given parameters can be used to calculate the frequency and wavelength of the wave.

6 0
3 years ago
20 Points available for physics help
Sonja [21]
The second one is correct not sure about the first one sorry
8 0
2 years ago
Read 2 more answers
Other questions:
  • Affirmations and strokes relate to the power of adult
    15·1 answer
  • How does temperature change affect surface tension
    10·1 answer
  • Explain how muscles and bones work together to help bend the arm.
    15·1 answer
  • In the Earth's mantle, heat is transferred in large convection currents. Within these currents,
    7·2 answers
  • Determine the smallest distance x to a position where 450-nm light reflected from the top surface of the glass interferes constr
    13·1 answer
  • Do Earth’s oceans gain or lose water, considering evaporation and precipitation together? How much?
    10·1 answer
  • Two containers hold equal masses of nitrogen gas at equal temperatures. You supply 10 J of heat to container A while not allowin
    9·1 answer
  • How does convection play a role in ocean currents?
    10·1 answer
  • Explain what must be true of component waves for reinforcement or interference to occur.
    8·2 answers
  • A 2.8 kg rectangular air mattress is 2.00 m long, 0.500 m wide, and
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!