Answer:
A. A statement of how the volume of a gas is related to its temperature.
Answer:
The car C has KE = 100, PE = 0
Explanation:
The principle of conservation of energy states that although energy can be transformed from one form to another, the total energy of the given system remains unchanged.
The energy that a body possesses due to its motion or position is known as mechanical energy. There are two kinds of mechanical energy: kinetic energy, KE and potential energy, PE.
Kinetic energy is the energy that a body possesses due to its motion.
Potential energy is the energy a body possesses due to its position.
From the principle of conservation of energy, kinetic energy can be transformed into potential energy and vice versa, but in all cases the energy is conserved or constant.
In the diagram above, the cars at various positions of rest or motion are transforming the various forms of mechanical energy, but the total energy is conserved at every point. At the point A, energy is all potential, at B, it is partly potential partly kinetic energy, However, at the point C, all the potential energy has been converted to kinetic energy. At D, some of the kinetic energy has been converted to potential energy as the car climbs up the hill.
Therefore, the car C has KE = 100, PE = 0
Well, Air resistance is a special type of friction (you cannot classify it in other categories). That force of air-resistance is often observed to oppose the motion of the object,( like every other frictional forces)
Hope this helps!
A bowler who always left the same 3 pins standing could be considered a C. Precise bowler as from bowling countless number of times he has observed the same amount of pins knocked down each time.
There would be very less percentage loss<span> of the kinetic energy during </span>the conversion<span> to internal energy, assuming that there is less air in the </span>surroundings<span>. Also, the friction will contribute to the conversion where if it is, the percentage loses is negligible.</span>