Answer:
Acceleration, a = -31.29 m/s²
Explanation:
It is given that, Initial speed of the aircraft, u = 140 mi/h =
62.58 m/s
Finally, it stops, v = 0
Time taken, t = 2 s
Let a is the acceleration of the aircraft. We know that the rate of change of velocity is called acceleration of the object. It is given by :
a = t
0-62.58 2 a =
a = -31.29 m/s²
So, the acceleration of the aircraft is 31.29 m/s²
and the car is decelerating. Hence, this is the required solution.
(i found this answer becuase i could do the math)
If a coastline has a very unusual shape it's normally caused by either a flood or dam.
hope this helps!
First we write the kinematic equations
a
v = a * t + vo
r = (1/2) at ^ 2 + vo * t + ro
We have then that:
(10.4 - t) = time that they run at their maximum speed
For Laura:
d = (1/2) at ^ 2 + (at) (10.4 - t)
100 m = (1/2) a (1.96) ^ 2 + [(1.96) a] (8.44)
100 = 1.9208a + 16.5424a
100 = 18.4632a
a = 100 / 18.4632 = 5.42 m / s ^ 2
For Healen:
100 = (1/2) a (3.11) ^ 2 + [(3.11) a] (7.29)
100 = 4.83605a + 22.6719a
100 = 27.50795a
a = 100 / 27.50795
a = 3.64 m / s ^ 2
Answer:
the acceleration of each sprinter is
Laura: 5.42 m / s ^ 2
Healen 3.64 m / s ^ 2
And you asking how many meters can he run in 100 sec