A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (Framework) recommends science education in grades K–12 be built around three major dimensions: science and engineering practices, crosscutting concepts that unify the study of science and engineering through their common application across fields, and core ideas in the major disciplines of natural science.
Answer:
4.7 m³
Explanation:
We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2
* Givens :
P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K
( We must always convert the temperature unit to Kelvin "K")
* What we want to find :
V2 = ?
* Solution :
101 × 2 / 300.15 = 40 × V2 / 283.15
V2 × 40 / 283.15 ≈ 0.67
V2 = 0.67 × 283.15 / 40
V2 ≈ 4.7 m³
Answer:
r = 20 m
Explanation:
The formula for the angular momentum of a rotating body is given as:
L = mvr
where,
L = Angular Momentum = 10000 kgm²/s
m = mass
v = speed = 2 m/s
r = radius of merry-go-round
Therefore,
10000 kg.m²/s = mr(2 m/s)
m r = (10000 kg.m²/s)/(2 m/s)
m r = 5000 kg.m ------------- equation 1
Now, the moment of inertia of a solid uniform disc about its axis through its center is given as:
I = (1/2) m r²
where,
I = moment of inertia = 50000 kg.m²
Therefore,
50000 kg.m² = (1/2)(m r)(r)
using equation 1, we get:
50000 kg.m² = (1/2)(5000 kg.m)(r)
(50000 kg.m²)/(2500 kg.m) = r
<u>r = 20 m</u>
Answer:
a = 3.61[m/s^2]
Explanation:
To find this acceleration we must remember newton's second law which tells us that the total sum of forces is equal to the product of mass by acceleration.
In this case we have:
![F = m*a\\\\m=mass = 3.6[kg]\\F = force = 13[N]\\13 = 3.6*a\\a = 3.61[m/s^2]](https://tex.z-dn.net/?f=F%20%3D%20m%2Aa%5C%5C%5C%5Cm%3Dmass%20%3D%203.6%5Bkg%5D%5C%5CF%20%3D%20force%20%3D%2013%5BN%5D%5C%5C13%20%3D%203.6%2Aa%5C%5Ca%20%3D%203.61%5Bm%2Fs%5E2%5D)