This follows the law of conservation of momentum. Momentum is the product of mass and velocity of object.
Momentum = mass(m) x velocity(v)
law of conservation of momentum means that the total momentum of system before the collision of 2 objects is equal to the total momentum after the collision
Before the collision total momentum
= m1v1 + m2v2
m1 = 2 kg
v1 = 2 m/s
m2 = 6 kg
v2 = 0 m/s
substituting the values in the equation
total momentum before = (2 kg x 2 m/s) + (6 kg x 0 m/s)
total momentum = 4 kgm/s
after the collision the 2 objects stick together and have a common velocity
total momentum after the collision = (6 kg + 2 kg)x V = 8V
V = speed of the conglomerate particle
since total momentum before is equal to total momentum after
8V = 4
V = 2 m/s
speed of conglomerate particle is 2 m/s
It’s basically that’s any system that’s closed to all transfers of matter and energy the mass of the system has to remain constant over time because they can’t change meaning you can’t add or remove from it
: If you mean table salt i.e. sodium chloride. It is held together by ionic bonds between sodium (Na+) and chloride (Cl-) ions. The sodium ions have a positive charge and the chlorine ions have a negative charge. Since opposite charges attract, they form ionic bonds. Ionic bonds are nothing more than the attraction between positive and negative ions.
Molarity = moles of solute/volume of solution in liters.
From this relation, we can figure out the number of moles of solute by multiplying the molarity of the solution by the volume in liters.
We have 53.1 mL, or 0.0531 L, of a 12.5 M, or 12.5 mol/L, solution. Multiplying 12.5 mol/L by 0.0531 L, we obtain 0.664 moles. So, in this volume of solution, there are 0.664 moles of solute (HCl).
Answer:
I had the same question and I put a total lunar eclipse.
Explanation:
A total lunar eclipse would be less widely visible because, in a partial lunar eclipse the moon only has to partly be in the Earth's shadow.
I don't know if this is helpful or not, but this is what I put if you still needed it.
Still stuck? Get 1-on-1 help from an expert tutor now.