One reaction that destroys o3 molecules in the stratosphere is when an ozone molecule combines with an oxygen atom to form two oxygen molecules, or through certain chemical reactions involving molecules containing hydrogen, nitrogen, chlorine, or bromine atoms. The atmosphere maintains a natural balance between ozone formation and destruction.
Answer:
Without corals, the algae are not protected and cannot perform photosynthesis.
Answer: 27.09 ppm and 0.003 %.
First, <u>for air pollutants, ppm refers to parts of steam or gas per million parts of contaminated air, which can be expressed as cm³ / m³. </u>Therefore, we must find the volume of CO that represents 35 mg of this gas at a temperature of -30 ° C and a pressure of 0.92 atm.
Note: we consider 35 mg since this is the acceptable hourly average concentration of CO per cubic meter m³ of contaminated air established in the "National Ambient Air Quality Objectives". The volume of these 35 mg of gas will change according to the atmospheric conditions in which they are.
So, according to the <em>law of ideal gases,</em>
PV = nRT
where P, V, n and T are the pressure, volume, moles and temperature of the gas in question while R is the constant gas (0.082057 atm L / mol K)
The moles of CO will be,
n = 35 mg x
x
→ n = 0.00125 mol
We clear V from the equation and substitute P = 0.92 atm and
T = -30 ° C + 273.15 K = 243.15 K
V = 
→ V = 0.0271 L
As 1000 cm³ = 1 L then,
V = 0.0271 L x
= 27.09 cm³
<u>Then the acceptable concentration </u><u>c</u><u> of CO in ppm is,</u>
c = 27 cm³ / m³ = 27 ppm
<u>To express this concentration in percent by volume </u>we must consider that 1 000 000 cm³ = 1 m³ to convert 27.09 cm³ in m³ and multiply the result by 100%:
c = 27.09
x
x 100%
c = 0.003 %
So, <u>the acceptable concentration of CO if the temperature is -30 °C and pressure is 0.92 atm in ppm and as a percent by volume is </u>27.09 ppm and 0.003 %.
In a balanced, non-charged atom, the number of protons (positive charge) is equal to the number of electrons (negative charge)
So there are 92 electrons
The H+ concentration in the lake has increased as a result of the acid rain.
The original pH of the lake was 7, which mean the water is neutral, but due to the acid rain, it drops to 5. This means, that the water has become acidic and how have more hydrogen ion. The H+ concentration in the lake has 100 times compares with its original pH.