Answer:
Marine life is least affected by the temperature fluctuations of the atmosphere.
Explanation:
The high specific heat capacity of water means that it takes much more energy to raise the temperatures of water by one (1) degree than land. This means that on a hot sunny day, land temperatures would increase dramatically while ocean temperatures would only rise slightly. Conversely, at night, the land cools rapidly while oceans cool slowly hence the temperatures drop slightly.
<span>Answer:
(16.2 g C2H6O2) / (62.0678 g C2H6O2/mol) / (0.0982 kg) = 3.9704 mol/kg = 3.9704 m
a.)
(3.9704 m) x (1.86 °C/m) = 7.38 °C change
0.00°C - 7.38 °C = - 7.38 °C
b.)
(3.9704 m) x (0.512 °C/m) = 2.03 °C change
100.00°C + 2.03 °C = 102.03 °C</span>
Answer is: <span>decomposition.
Balanced chemical reaction: H</span>₂CO₃ → CO₂ + H₂O.
H₂CO₃ is carbonic acid.
CO₂ is carbon (IV) oxide or carbon dioxide.<span>
Chemical decomposition is the separation of
a single chemical compound (in this example </span>carbonic acid<span>) into
its two or more simpler compounds (in this example water and
carbon dioxide).</span>
Answer:
3.3557047 mL
Explanation:
The density can be found using the following formula:

Let's rearrange the formula to find the volume,
.




The volume can be found by dividing the mass by the density. The mass of the chloroform is 5 grams and the density is 1.49 grams per milliliter. Therefore,

Substitute the values into the formula.

Divide. When we divide, the grams, or g, in the numerator and denominator will cancel out.


The volume of 5 grams of chloroform is 3.3557047 milliliters
Answer: B- Chemical bonds are formed. Energy is released in the form of heat.
Explanation: I hoped that helped !