It’s c had this problem last week
Answer:
The answer to your question is MgSO₄ 5H₂O
Explanation:
Data
mass of MgSO₄ = 2.86 g
mass of H₂O = 2.14 g (5 - 2.86)
Process
1.- Calculate the molecular mass of the compounds
MgSO₄ = 24 + 32 + (16 x 4) = 120
H₂O = 16 + 2 = 18
2.- Convert the grams obtain to moles
120 g of MgSO₄ --------------- 1 mol
2.8 g ---------------- x
x = (2.8 x 1)/120
x = 0.024 moles
18 g of H₂O --------------------- 1 mol
2.14 g -------------------- x
x = (2.14 x 1)/18
x = 0.119
3.- Divide by the lowest number of moles
MgSO₄ = 0.024/0.024 = 1
H₂O = 0.119/ 0.024 = 5
4.- Write the molecular formula
MgSO₄5H₂O
Spectroscopy be used to distinguish between the following is the compound B has a peak at 3200 – 3500 cm⁻¹ in its IR spectrum.
<h3>What is spectroscopy?</h3>
Spectroscopy is the study of emission or absorption of light. It is used to study the structure of atoms and molecules.
The three types of spectroscopy are:
- atomic absorption spectroscopy (AAS)
- atomic emission spectroscopy (AES)
- atomic fluorescence spectroscopy (AFS)
Thus, the correct option is B, the compound B has a peak at 3200 – 3500 cm⁻¹ in its IR spectrum.
Learn more about spectroscopy
brainly.com/question/5402430
#SPJ1
Explanation:
The given data is as follows.
Volume of lake =
= 
Concentration of lake = 5.6 mg/l
Total amount of pollutant present in lake = 
=
mg
=
kg
Flow rate of river is 50 
Volume of water in 1 day = 
=
liter
Concentration of river is calculated as 5.6 mg/l. Total amount of pollutants present in the lake are
or 
Flow rate of sewage = 
Volume of sewage water in 1 day =
liter
Concentration of sewage = 300 mg/L
Total amount of pollutants =
or 
Therefore, total concentration of lake after 1 day = 
= 6.8078 mg/l
= 0.2 per day
= 6.8078
Hence,
= 
=
= 1.234 mg/l
Hence, the remaining concentration = (6.8078 - 1.234) mg/l
= 5.6 mg/l
Thus, we can conclude that concentration leaving the lake one day after the pollutant is added is 5.6 mg/l.