Answer:
2m/s²
Explanation:
When an object starts or at its state of rest it has an Initial speed U = 0
Final speed = 6m/s
total time taken for the acceleration = 3s
Acceleration =?
Acceleration is the change in velocity (speed) with time
OR
Time rate of change of velocity
Acceleration = <u>Change in Speed(velocity)</u>
Time taken
Hence,
Acceleration = <u> </u><u> </u><u>V - </u><u>U</u><u> </u><u> </u>
t
a = <u>6</u><u> </u><u>-</u><u> </u><u>0</u>
3
a = <u>6</u><u> </u><u> </u>
3
a = 2m/s²
Answer:
184.113 g/mol
Explanation: The atomic mass of Mg is 24.3 amu. The atomic mass of bromine is 79.9. Therefore, the formula weight of MgBr2 equals 24.3 amu + (2 × 79.9 amu), or 184.1 amu. Because a substance's molar mass has the same numerical value as its formula weight, the molar mass of MgBr2 equals 184.1 g/mol.
Answer:
(1) Chloroplast
Explanation:
Cells of living organisms are made up of certain function-specific structures called ORGANELLES. Some organelles are present in plant cells and absent in animal cells and vice versa. In a plant cell, one notable organelle that allows it perform the photosynthetic process is the CHLOROPLAST.
However, the chloroplast is predominantly found in the LEAF part of a plant. This is because leaf cells are the site of photosynthesis. Hence, according to this question, Joe would be able to tell whether the plant cell was from the leaf or the root by looking for CHLOROPLAST as a differentiating factor in each cell.
It is a binary direct bandgap semiconductor commonly used in light-emitting diodes since the 1990s
Answer:
102g
Explanation:
To find the mass of ethanol formed, we first need to ensure that we have a balanced chemical equation. A balanced chemical equation is where the number of atoms of each element is the same on both sides of the equation (reactants and products). This is useful as only when a chemical equation is balanced, we can understand the relationship of the amount (moles) of reactant and products, or to put it simply, their relationship with one another.
In this case, the given equation is already balanced.
From the equation, the amount of ethanol produced is twice the amount of yeast present, or the same amount of carbon dioxide produced. Do note that amount refers to the number of moles here.
Mole= Mass ÷Mr
Mass= Mole ×Mr
<u>Method 1: using the </u><u>mass of glucose</u>
Mr of glucose
= 6(12) +12(1) +6(16)
= 180
Moles of glucose reacted
= 200 ÷180
= mol
Amount of ethanol formed: moles of glucose reacted= 2: 1
Amount of ethanol
=
= mol
Mass of ethanol
=
=
= 102 g (3 s.f.)
<u>Method 2: using </u><u>mass of carbon dioxide</u><u> produced</u>
Mole of carbon dioxide produced
= 97.7 ÷[12 +2(16)]
= 97.7 ÷44
= mol
Moles of ethanol: moles of carbon dioxide= 1: 1
Moles of ethanol formed= mol
Mass of ethanol formed
=
= 102 g (3 s.f.)
Thus, 102 g of ethanol are formed.
Additional:
For a similar question on mass and mole ratio, do check out the following!