Answer:
The molarity of the solution is 7.4 mol/L
Explanation:
From the question above
0.400 ml of water contains 1.00 g of hydrochloride form of cocaine
Therefore 1000 ml of water will contain x g of hydrochloride form of cocaine
x = 1000 / 0.400
x = 2500 g
2500g of hydrochloride form of cocaine is present in 1000 ml of water.
Mole of hydrochloride form of cocaine = mass /molar mass of hydrochloride
Mole of hydrochloride form of cocaine = 2500/339.8
= 7.4 mol
Molarity = mol/ volume in liter (L)
molarity = 7.4 /1
Molarity = 7.4 mol/L
Answer:
- 130.64°C.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 634.0 L, T₁ = 21.0°C + 273 = 294.0 K.
V₂ = 307.0 L, T₂ = ??? K.
<em>∴ T₂ = V₂T₁/V₁ </em>= (307.0 L)(294.0 K)/(634.0 L) = <em>142.36 K.</em>
<em>∴ T₂(°C) = 142.36 K - 273 = - 130.64°C.</em>
Density is a physical property. It's measured and doesn't change the object chemically.
I got that pH=3.65 using the fact that Ka=[H⁺][A⁻]/[HA] at equilibrium. In the ice table, I stands for initial, C stands for change, and E stands for equilibrium.
I hope this helps. Let me know if anything is unclear.