Answer:
None
Explanation:
It'll be impossible for the project to be eligible for any other LT credits because it can't double dip.
Double dip refers to obtaining money from two sources at the same time or by two separate accounting methods.
This is often regarded, unethical.
The correct answer is C. Taiga hope it helps ( :
Without an atmosphere, the equatorial curve would show minimum daily values on the solstices in June when the sub-solar point is located at 23.5°N and in December when the sub-solar point is at 23.5°S latitude.
Explanation:
At the sub-solar point, the sun strikes directly at the surface with an angle of 90 degrees at a given point.
Solistice refers to that point in time when the sun’s zenith is located at the farthest point from the equator.
During summer solistice on June 21, the sun’s zenith reaches northernmost point, sub-solar point is fixed at 23.5°S Tropic of Cancer making the earth tilt 23.4 degrees
During winter soliscitse on December 21, the sub-solar point is fixed at) Tropic of Capricorn.
Lol i think someone would be fired from their job if they threw food
Answer:
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
For this problem let's use Newton's second law applied to each body
Body A
X axis
T = m_A a
Axis y
N- W_A = 0
Body B
Vertical axis
W_B - T = m_B a
In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension
We write the equations
T = m_A a
W_B –T = M_B a
We solve this system of equations
m_B g = (m_A + m_B) a
a = m_B / (m_A + m_B) g
In this initial case
m_A = M
m_B = M
a = M / (1 + 1) M g
a = ½ g
Let's find the tension
T = m_A a
T = M ½ g
T = ½ M g
Now we change the mass of the second block
m_B = 2M
a = 2M / (1 + 2) M g
a = 2/3 g
We seek tension for this case
T’= m_A a
T’= M 2/3 g
Let's look for the relationship between the tensions of the two cases
T’/ T = 2/3 M g / (½ M g)
T’/ T = 4/3
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e