You want to isolate the x-term from the constant term, so you can subtract x/3 and add 10. This gives you
... 4/9x -10 -x/3 +10 > x/3 -12 -x/3 +10
... 1/9x > -2 . . . . . . collect terms
Now, you can multiply by 9 to see the condition on x.
... 9(1/9x) > -2(9)
... x > -18
On the x-y plane, the graph of this will be a dashed line at x=-18, and the half-plane to the right of that line will be shaded.
On a number line, there will be an open circle at x=-18, and the number line to the right of that circle will be marked (bold, colored, shaded, whatever).
Try explaining how you worked the problem and how you did it
Answer:
for what?
Step-by-step explanation:
- Zero Product Property: if a × b = 0, then either a or b = 0 or both a and b = 0.
(Make sure to set f(x) to zero)
So for this equation, I will be factoring by grouping. Firstly, what two terms have a product of -5x^2 and a sum of 4x? That would be 5x and -x. Replace 4x with 5x - x: 
Next, factor 5x^2 + 5x and -x - 1 separately. Make sure that they have the same quantity on the inside: 
Now you can rewrite the equation as: 
Now apply zero product property to the factors to solve for x:

<u>The x-intercepts are (1/5 ,0) and (-1,0).</u>
For the sequence 2, 6, 18, 54, ..., the explicit formula is: an = a1 ! rn"1 = 2 ! 3n"1 , and the recursive formula is: a1 = 2, an+1 = an ! 3 . In each case, successively replacing n by 1, 2, 3, ... will yield the terms of the sequence. See the examples below.