Answer:
B) 20N.s is the correct answer
Explanation:
The formula for the impulse is given as:
Impulse = change in momentum
Impulse = mass × change in speed
Impulse = m × ΔV
Given:
initial speed = 40m/s
Final speed = -60 m/s (Since the the ball will now move in the opposite direction after hitting the bat, the speed is negative)
mass = 0.20 kg
Thus, we have
Impulse = 0.20 × (40m/s - (-60)m/s)
Impulse = 0.20 × 100 = 20 kg-m/s or 20 N.s
Answer:
Explanation:
electrical field strength = potential diff / distance
= ( 450 - 0 ) / 8 x 10⁻²
= 5625 V/m
b )
potential difference = electric field x distance
= 5625 x .10
= 562.5 V
D. They are heterotrophs that digest food internally.
Hydrogen is an element made of only one kind of atom
Answer:
when the center of gravity is within the washing area, the torque returns in the body to its initial position and is in a stable equilibrium
Explanation:
The concept of center of gravity is equivalent to the concept of center of mass, in this place all external forces applied can be considered.
When we analyze the balance of a body that is the torque it is the one that defines the balance
τ = F xd
If the torque tends to restore the body to the initial position the balance is stable, but if the torque has to increase the body's rotation the balance is unstable
. When the body tends to rotate the torque with respect to the pivot point at the base it decreases because the distance from the center of gravity to the end of the base decreases in value, but it has to return it to the initial position, the balance is stable. The critical point of this process is when the center of gravity is at the limit of the body base area in this case the torque is zero; If the body rotates a little more the center of gravity is outside the base, the torque changes sign and has to increase the turn, going to an unstable balance.
In summary, when the center of gravity is within the washing area, the torque returns in the body to its initial position and is in a stable equilibrium.