If the earth's mass were half its actual value but its radius stayed the same, the escape velocity of the earth would be
.
<h3>What is an escape velocity?</h3>
The ratio of the object's travel distance over a specific period of time is known as its velocity. As a vector quantity, the velocity requires both the magnitude and the direction. the slowest possible speed at which a body can break out of the gravitational pull of a certain planet or another object.
The formula to calculate the escape velocity of earth is given below:-

Given that earth's mass was half its actual value but its radius stayed the same. The escape velocity will be calculated as below:-

.
Therefore, If the earth's mass were half its actual value but its radius stayed the same, the escape velocity of the earth would be
.
To know more about escape velocity follow
brainly.com/question/14042253
#SPJ4
Answer:
D
Explanation:
Work is not a vector but it is a scalar
Answer:
The inquiry process takes advantage of the natural human desire to make sense of the world... This attitude of curiosity permeates the inquiry process and is the fuel that allows it to continue. Process skills are not used for their own sake.
Answer:
The tension is 
Explanation:
The free body diagram of the question is shown on the first uploaded image From the question we are told that
The distance between the two poles is 
The mass tied between the two cloth line is 
The distance it sags is 
The objective of this solution is to obtain the magnitude of the tension on the ends of the clothesline
Now the sum of the forces on the y-axis is zero assuming that the whole system is at equilibrium
And this can be mathematically represented as

To obtain
we apply SOHCAHTOH Rule
So 
![\theta = tan^{-1} [\frac{opp}{adj} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%5E%7B-1%7D%20%5B%5Cfrac%7Bopp%7D%7Badj%7D%20%5D)
![= tan^{-1} [\frac{1}{7}]](https://tex.z-dn.net/?f=%3D%20tan%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7B7%7D%5D)






Celestial bodies in the universe like the stars, gain their energy by nuclear fusion. This is a nuclear reaction that emits radiation by joining subatomic particles together to yield another new element. This cause by instability of certain elements due to their high neutron-to-proton ratio. The most stable element there is, is Fe-26. Elements lighter than Fe-26 are most likely to undergo nuclear fusion (combining), while elements heavier than Fe-26 are most likely to undergo nuclear fission (breaking).
So that is how the Sun gains its energy. It is very abundant in hydrogen, such that hydrogen undergoes nuclear fusion. Two protons from two hydrogen atoms combine at very very high temperatures to form a Helium atom. Therefore, a high-mass star life is very abundant in Hydrogen, while a low-mass star life is very abundant in Helium.