Answer:
Mc = 1920[lb*in]
Explanation:
Para poder solucionar este problema debemos realizar un análisis estático, por tal motivo lo primero es realizar un diagrama de cuerpo libre con las respectivas fuerzas actuando sobre la barra ABC. DE igual manera calcular la geometría de la configuración mostrada.
El diagrama de cuerpo libre se puede ver en la imagen adjunta, con la solución de este problema.
Lo primero es determinar el angulo t, el cual por medio de las propiedades del triangulo rectángulo se puede determinar.
Con este angulo (t) ya determinado, fijamos la atención en el triangulo BCD, este triangulo no es rectángulo, pero por medio de la ley de senos podemos determinar el angulo omega.
Después de determinar el angulo omega, restamos el angulo (t) para poder determinar el angulo (a).
Seguidamente realizamos una sumatoria de momentos alrededor del punto C, utilizado las respectivas fuerzas con los ángulos descompuestos.
El momento en el punto C es de 1920 [Lb*in].
Nota: ya que no se menciona la fuerza en el punto A, esta se desprecia y no se tiene en cuenta en los calculos. En la imagen adjunta se puede ver el procedimiento desarrollado.
Answer:
v_average = 15 m / s
Explanation:
The average speed can be found in two ways,
* taking the distance traveled and divide it by the time spent
* taking the velocities in each time interval and then finding the weighted average by the time fraction
v_average = 1 / t_total ∑
vi ti
Let's apply this last equation
Total time is
t = t₁ + t₂
t = 10 + 10 = 20 min
v_average = 10/20 10 + 10/20 20
v_average = 10/2 + 20/2
v_average = 15 m / s
Answer:
An accelerometer is a tool that measures proper acceleration.[1] Proper acceleration is the acceleration (the rate of change of velocity) of a body in its own instantaneous rest frame;[2] this is different from coordinate acceleration, which is acceleration in a fixed coordinate system. For example, an accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth's gravity, straight upwards[3] (by definition) of g ≈ 9.81 m/s2. By contrast, accelerometers in free fall (falling toward the center of the Earth at a rate of about 9.81 m/s2) will measure zero.
Accelerometers have many uses in industry and science. Highly sensitive accelerometers are used in inertial navigation systems for aircraft and missiles. Vibration in rotating machines is monitored by accelerometers. They are used in tablet computers and digital cameras so that images on screens are always displayed upright. In unmanned aerial vehicles, accelerometers help to stabilise flight.
When two or more accelerometers are coordinated with one another, they can measure differences in proper acceleration, particularly gravity, over their separation in space—that is, the gradient of the gravitational field. Gravity gradiometry is useful because absolute gravity is a weak effect and depends on the local density of the Earth, which is quite variable.
Single- and multi-axis accelerometers can detect both the magnitude and the direction of the proper acceleration, as a vector quantity, and can be used to sense orientation (because the direction of weight changes), coordinate acceleration, vibration, shock, and falling in a resistive medium (a case in which the proper acceleration changes, increasing from zero). Micromachined microelectromechanical systems (MEMS) accelerometers are increasingly present in portable electronic devices and video-game controllers, to detect changes in the positions of these devices.
Explanation:
hope this helps !!!!