Because each element has an exactly defined line emission spectrum, scientists are able to identify them by the color of flame they produce.
Both of them have high electronegativity. Hence they both tend to gain electrons to gain stability.
The answer to your question would be silicon. I hope this helped!!!
Answer:
Molecular formula for the gas is: C₄H₁₀
Explanation:
Let's propose the Ideal Gases Law to determine the moles of gas, that contains 0.087 g
At STP → 1 atm and 273.15K
1 atm . 0.0336 L = n . 0.082 . 273.15 K
n = (1 atm . 0.0336 L) / (0.082 . 273.15 K)
n = 1.500 × 10⁻³ moles
Molar mass of gas = 0.087 g / 1.500 × 10⁻³ moles = 58 g/m
Now we propose rules of three:
If 0.580 g of gas has ____ 0.480 g of C _____ 0.100 g of C
58 g of gas (1mol) would have:
(58 g . 0.480) / 0.580 = 48 g of C
(58 g . 0.100) / 0.580 = 10 g of H
48 g of C / 12 g/mol = 4 mol
10 g of H / 1g/mol = 10 moles
Answer: The bubbles produced are most likely due to oxygen.
Explanation:
Photosynthesis is a phenomenon in which green plants containing chlorophyll use sunlight as a source of energy to convert carbon dioxide and water to form glucose and oxygen.
The balanced chemical reaction for photosynthesis is:

Thus the bubbles produced are most likely due to oxygen.