They are hard solid with a crystal lattice structure... with high melting points
Answer:
Sound travels over 4 times faster in the ocean than it does on land.
Explanation:
Speed of sound in water is approximately 1500 meters per second
and the speed of sound in air is approximately 340 meters per second.
Kono Dio Da!!!
The population of big fish would increase because they have more food
The problem can solved using the heat equation which is expressed as:
H = mCΔT
where H is the energy absorbed or released, m is the mass of the substance, C is the specific heat capacity, and ΔT is the change in temperature.
2208 J = 41 g x 4.18 J/g·°C x ( T - 24 °C)
T = 36.88 °C
Answer : The energy required is, 574.2055 KJ
Solution :
The conversions involved in this process are :

Now we have to calculate the enthalpy change or energy.
![\Delta H=[m\times c_{p,s}\times (T_{final}-T_{initial})]+n\times \Delta H_{fusion}+[m\times c_{p,l}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Bm%5Ctimes%20c_%7Bp%2Cs%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D%2Bn%5Ctimes%20%5CDelta%20H_%7Bfusion%7D%2B%5Bm%5Ctimes%20c_%7Bp%2Cl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
= energy required = ?
m = mass of ice = 1 kg = 1000 g
= specific heat of solid water = 
= specific heat of liquid water = 
n = number of moles of ice = 
= enthalpy change for fusion = 6.01 KJ/mole = 6010 J/mole
Now put all the given values in the above expression, we get
![\Delta H=[1000g\times 4.18J/gK\times (0-(-10))^oC]+55.55mole\times 6010J/mole+[1000g\times 2.09J/gK\times (95-0)^oC]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B1000g%5Ctimes%204.18J%2FgK%5Ctimes%20%280-%28-10%29%29%5EoC%5D%2B55.55mole%5Ctimes%206010J%2Fmole%2B%5B1000g%5Ctimes%202.09J%2FgK%5Ctimes%20%2895-0%29%5EoC%5D)
(1 KJ = 1000 J)
Therefore, the energy required is, 574.2055 KJ