Answer:
The height of the water slide is 0.878 m
Explanation:
Given that,
Distance = 2.52 m
Suppose Children slide down a friction less water slide that ends at a height of 1.80 m above the pool.
We need to calculate the time
Using equation of motion

Put the value in the equation




We need to calculate the velocity
Using formula of velocity

Put the value into the formula


We need to calculate height
Using conservation of energy


Put the value into the formula


Hence, The height of the water slide is 0.878 m.
There’s nothing to answer to
Refraction is the change in direction of waves that occurs when waves travel from one medium to another. Refraction is always accompanied by a wavelength and speed change. Diffraction is the bending of waves around obstacles and openings.
<span>It’s 2/5 MR^2 where M is mass and R is the radius of the bas</span>
Answer:
Explanation:
Hello,
Let's get the data for this question before proceeding to solve the problems.
Mass of flywheel = 40kg
Speed of flywheel = 590rpm
Diameter = 75cm , radius = diameter/ 2 = 75 / 2 = 37.5cm.
Time = 30s = 0.5 min
During the power off, the flywheel made 230 complete revolutions.
∇θ = [(ω₂ + ω₁) / 2] × t
∇θ = [(590 + ω₂) / 2] × 0.5
But ∇θ = 230 revolutions
∇θ/t = (530 + ω₂) / 2
230 / 0.5 = (530 + ω₂) / 2
Solve for ω₂
460 = 295 + 0.5ω₂
ω₂ = 330rpm
a)
ω₂ = ω₁ + αt
but α = ?
α = (ω₂ - ω₁) / t
α = (330 - 590) / 0.5
α = -260 / 0.5
α = -520rev/min
b)
ω₂ = ω₁ + αt
0 = 590 +(-520)t
520t = 590
solve for t
t = 590 / 520
t = 1.13min
60 seconds = 1min
X seconds = 1.13min
x = (60 × 1.13) / 1
x = 68seconds
∇θ = [(ω₂ + ω₁) / 2] × t
∇θ = [(590 + 0) / 2] × 1.13
∇θ = 333.35 rev/min