Answer:
[EtOH] = 2.2M and Wt% EtOH = 10.1% (w/w)
Explanation:
1. Molarity = moles solute / Volume solution in Liters
=> moles solute = mass solute / formula weight of solute = 9.8g/46g·mol⁻¹ = 0.213mol EtOH
=> volume of solution (assuming density of final solution is 1.0g/ml) ...
volume solution = 9.81gEtOH + 87.5gH₂O = 97.31g solution x 1g/ml = 97.31ml = 0.09731 Liter solution
Concentration (Molarity) = moles/Liters = 0.213mol/0.09731L = 2.2M in EtOH
2. Weight Percent EtOH in solution (assuming density of final solution is 1.0g/ml)
From part 1 => [EtOH] = 2.2M in EtOH = 2.2moles EtOH/1.0L soln
= {(2.2mol)(46g/mol)]/1000g soln] x 100% = 10.1% (w/w) in EtOH.
Lowest is Hydrogen highest is <span>Beryllium
-HOPE THIS HELPED </span>
Answer:
60 V
Explanation:
From;
Vs/Vp = Ns/Np
Where;
Vs = voltage in the secondary coil = 6V
Vp = voltage in the primary coil= ??
Ns = number of turns in the secondary coil = 9
Np= number of turns in the primary coil = 90
6/Vp = 9/90
Vp= 90 * 6/9
Vp= 60 V
Answer:
(2R,3S)-2-ethoxy-3-methylpentane
and
(2S,3S)-2-ethoxy-3-methylpentane
Explanation:
For this case, we will have
as nucleophile. Also, this compound is also in excess. So, we will have as solvent
a protic solvent. Therefore the Sn1 reaction would be favored.
The first step would be the carbocation formation followed by the attack of the nucleophile. In this case both isomers would be produced: R and S (see figure).
Answer:
1.07 g Ba
Explanation:
Hello there!
In this case, according to the definition of the Avogadro's number and the molar mass, it is possible to say that 6.022x10^{23} atoms of barium equal one mole, and at the same time, 1 mole equals 137.327 grams of this element; thus, it is possible to say that 6.022x10^{23} atoms of barium have a mass of 137.327 grams; therefore, it i possible for us to calculate the required mass in grams as shown below:

Best regards!