Identify<span> each </span>bond<span> as either </span>polar<span> or nonpolar.</span>
The answer would be 150 half of 200 and 100 is 150
Oxidation is the loss of electrons and corresponds to an increase in oxidation state. Reduction is the gain of electrons and corresponds to a decrease in oxidation state. Balancing redox reactions can be more complicated than balancing other types of reactions because both the mass and charge must be balanced. Redox reactions occurring in aqueous solutions can be balanced by using a special procedure called the half-reaction method of balancing. In this procedure the overall equation is broken down into two half-reactions: one for oxidation and the other for reduction. The half-reactions are balanced individually and then added together so that the number of electrons generated in the oxidation half reaction is the same as the number of electrons consumed in the reduction half-reaction.
<span>The flame goes out on a burning match when sodium carbonate and hydrochloric
</span>
Answer:
Therefore the density of the sheet of iridium is 22.73 g/cm³.
Explanation:
Given, the dimension of the sheet is 3.12 cm by 5.21 cm.
Mass: The mass of an object can't change with respect to position.
The S.I unit of mass is Kg.
Weight of an object is product of mass of the object and the gravity of that place.
Density: The density of an object is the ratio of mass of the object and volume of the object.

[S.I unit of mass= Kg and S.I unit of m³]
Therefore the S.I unit of density = Kg/m³
Therefore the C.G.S unit of density=g/cm³
The area of the sheet is = length × breadth
=(3.12×5.21) cm²
=16.2552 cm²
Again given that the thickness of the sheet is 2.360 mm =0.2360 cm
Therefore the volume of the sheet is =(16.2552 cm²×0.2360 cm)
=3.8362272 cm³
Given that the mass of the sheet of iridium is 87.2 g.

=22.73 g/cm³
Therefore the density of the sheet of iridium is 22.73 g/cm³.