<span>238,900 mi hope it helps :)</span>
Answer:
v = 24 m/s, rightwards
Explanation:
Given that,
The mass of TBT explosive = 5 kg
It explodes into two pieces.
One of the pieces weighing 2.0 kg flies off to the left at 36 m/s. Let left be negative and right be positive.
The law of conservation of momentum holds here. Let v be the final speed of the remaining piece. So,

So, the final speed of the remaining piece is 24 m/s and it is in the right direction.
First, foremost, and most critically, you must look at the graph, and critically
examine its behavior from just before until just after the 5-seconds point.
Without that ability ... since the graph is nowhere to be found ... I am hardly
in a position to assist you in the process.
Answer:
(a) ε = 1373.8.
(b) The wingtip which is at higher potential.
Explanation:
(a) Finding the potential difference between the airplane wingtips.
Given the parameters
wingspan of the plane is = 18.0m
speed of the plane in north direction is = 70.0m/s
magnetic field of the earth is = 1.20μT
The potential difference is given as:
ε = Blv
where ε = potential difference of wingtips
B = magnetic field of earth
l = wingspan of airplane
v = speed of airplane
ε = 1.2 x 18.0 x 63.6
ε = 1373.8
(b) Which wingtip is at higher potential?
The wingtip which is at higher potential.