Answer:
dark brown with a hint of purple
have a good day :)
Explanation:
Answer:
With less energy at higher trophic levels, there are usually fewer organisms as well
Explanation: Organisms tend to be larger in size at higher trophic levels, but their smaller numbers result in less biomass. Biomass is the total mass of organisms at a trophic level.
<u>Answer:</u> The temperature of the system is 273 K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
Given mass of carbon dioxide = 1 lb = 453.6 g (Conversion factor: 1 lb = 453.6 g)
Molar mass of carbon dioxide = 44 g/mol
Putting values in above equation, we get:

To calculate the temperature of gas, we use the equation given by ideal gas equation:
PV = nRT
where,
P = Pressure of carbon dioxide = 200 psia = 13.6 atm (Conversion factor: 1 psia = 0.068 atm)
V = Volume of carbon dioxide =
(Conversion factor:
)
n = number of moles of carbon dioxide = 10.31 mol
R = Gas constant = 
T = temperature of the system = ?
Putting values in above equation, we get:

Hence, the temperature of the system is 273 K
Answer:
= 25.05°C
Explanation:
Given:
the value of ΔHcomb (heat of combustion) for dimethylphthalate (C10H10O4) is = 4685 kJ/mol.
mass = 0.905g of dimethylphthalate
molar mass = 194.18g dimethylphthalate
number of moles of dimethylphthalate = ???
= 21.5°C
= 6.15 kJ/°C
= ???
since we have our molar mass and mass of dimethylphthalate ;we can determine the number of moles as;
0.905g of dimethylphthalate × 
number of moles of dimethylphthalate = 0.000466 moles
Heat released = moles of dimethylphthalate × heat of combustion
= 0.000466 moles × 4685 kJ
= 21.84 kJ
∴ Heat absorbed by the calorimeter =

21.84 kJ =6.15 kJ/°C 
21.84 KJ = 
21.84 KJ =
- 132.225 kJ
21.84 KJ + 132.225 kJ = 
154.065 kJ = 
= 
=25.05°C
1 ba+2 br——>1 babr2
u just have to make sure u have the same number of each type of atom on either side of the equation:)