Answer:
The answer to your question is <u>111 g of CaCl₂</u>
Explanation:
Reaction
2HCl + CaCO₃ ⇒ CaCl₂ + CO₂ + H₂O
Process
1.- Calculate the molecular mass of Calcium carbonate and calcium chloride
CaCO₃ = (1 x 40) + (1 x 12) + ((16 x 3) = 100 g
CaCl₂ = (1 x 40) + (35.5 x 2) = 111 g
2.- Calculate the amount of calcium chloride produced using proportions.
The proportion CaCO₃ to CaCl₂ is 1 : 1.
100 g of CaCO₃ ------------- 111 g of CaCl₂
Then 111g of CaCl₂ will be produced.
The type of the bond is present Na₃PO₄ is the ionic bond. the Na₃PO₄ is the ionic compound. yes the Na₃PO₄ is the polyatomic ion.
The Na₃PO₄ is Na⁺ and PO₄³⁻. the phosphorus is the non metal and the oxygen atom is the non metal. the non meta and non meta form the covalent or molecular bond. the bond between the PO₄³⁻ bond is the covalent bond but the overall present in the Na₃PO₄ is the ionic bond . the bons in between the Na⁺ and PO₄³⁻ is the the ionic bond. the PO₄³⁻ id the polyatomic ion .
The bond between the positively charged ion and the negatively charged ion are called as the ionic bond and the compound form is the ionic compound.
To learn more about ionic bond here
brainly.com/question/29005103
#SPJ4
Answer:Even if your door is closed, you would still smell the odors because of the space under the door and the space that is needed to close the door.
Explanation:
The answer is Non-renewable
pH = 2.1
Let
resembles the acid; as a weak acid (a small value of
)
would partially dissociate to produce protons
and
, its conjugate base. Let the final proton concentration (i.e.,
) be
. (Apparently
) Construct the following RICE table:

By definition, (all concentrations are under equilibrium condition)
![\left\begin{array}{ccc}K_{a}&=&[H^{+}] \cdot [A^{-}] / [HA]\\&=&x^{2} /(0.14 - x)\end{array}\right](https://tex.z-dn.net/?f=%20%20%5Cleft%5Cbegin%7Barray%7D%7Bccc%7DK_%7Ba%7D%26%3D%26%5BH%5E%7B%2B%7D%5D%20%5Ccdot%20%5BA%5E%7B-%7D%5D%20%2F%20%5BHA%5D%5C%5C%26%3D%26x%5E%7B2%7D%20%2F%280.14%20-%20x%29%5Cend%7Barray%7D%5Cright%20)
It is given that

Equating and simplifying the two expressions gives a quadratic equation; solve the equation for
gives:

The pH of a solutions equals the opposite of the logarithm of its proton concentration to base 10; thus for this particular solution
![\text{pH} = -\text{ln(}[H^{+}]\text{)} / \text{ln(}10\text{)} = 2.1](https://tex.z-dn.net/?f=%20%5Ctext%7BpH%7D%20%3D%20-%5Ctext%7Bln%28%7D%5BH%5E%7B%2B%7D%5D%5Ctext%7B%29%7D%20%2F%20%5Ctext%7Bln%28%7D10%5Ctext%7B%29%7D%20%3D%202.1%20)