Answer:
Explanation:
The amplitude of the oscillation under SHM will be .5 m and the equation of
SHM can be written as follows
x = .5 sin(ωt + π/2) , here the initial phase is π/2 because when t = 0 , x = A ( amplitude) , ω is angular frequency.
x = .5 cosωt
given , when t = .2 s , x = .35 m
.35 = .5 cos ωt
ωt = .79
ω = .79 / .20
= 3.95 rad /s
period of oscillation
T = 2π / ω
= 2 x 3.14 / 3.95
= 1.6 s
b )
ω = 
ω² = k / m
k = ω² x m
= 3.95² x .6
= 9.36 N/s
c )
v = ω
At t = .2 , x = .35
v = 3.95 
= 3.95 x .357
= 1.41 m/ s
d )
Acceleration at x
a = ω² x
= 3.95 x .35
= 1.3825 m s⁻²
Answer:
Option B. The planet is a very way from the center or the Sun.
Explanation:
If the surface temperature of the newly formed planet is - 20 K that means the distance of the planet from the sun in greater.
If we look at the temperature trends of the planets in our solar system, the planets closer to the sun like Mercury, Venus have very high surface temperature but as we move move away from the the center of the solar system, i.e., Sun, the temperature goes on decreasing.
Answer:
Explanation:
Given
Initial velocity of first billiard ball 
Initial velocity of second billiard ball 
After collision first ball comes to rest
suppose m is the mass of both the balls
Conserving momentum to get the speed of second ball after collision
Initial momentum 
Final momentum 
where
and
are the speed of first and second ball respectively



thus speed of second ball after collision is equal to speed of first ball before collision
The sun. The more mass an object has, the greater gravitational pull it will have, as mass attracts other mass.
Earth is the center according to the geocentric model.